首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the ashing treatment at atmospheric pressure by means of three spray-type reactors fed with O2/He or O2/Ar mixture gases. These differed in the size or the shape of their nozzles. Such reactors were able to ash an organic compound (OFPR-800; a photoresist) even at atmospheric pressure. The results showed that the following procedures are important for increasing the ashing rate: to make the gas speed after blowing out fast; to decrease the O2 content while increasing the gas speed; and to use a gas mixture which has a slow decay rate of the active species, such as the oxygen radicals. Especially, when we used O2/Ar mixture gas for the ashing treatment, the ashing rate became quite fast and was as fast as that of a general low pressure glow plasma.  相似文献   

2.
Plasma-polymerized hexafluoropropene (PPHFP) film deposited using a dielectric barrier discharge reactor at atmospheric pressure had low enough adhesive strength, 22.2 Nm–1, for use as a release coating of pressure-sensitive adhesive tapes, but the bond strength between PPHFP film and a poly (ethylene terephthalate) (PET) substrate film was slightly weak: some part of the PPHFP deposits could be peeled from the PET substrate. Since the XPS results indicated that the bond strength between plasma-polymerized ethylene (PPE) film and PET substrate was strong enough, we tried to deposit PPE and plasma-polymerized ethylene - hexafluoropropene gradient plasma-copolymer between the PET substrate and the PPHFP film. This multi-layer film (MLF) had low enough adhesive strength, 36.6 Nm–1, for use as the release coating; this value was near that of a control sample, Teflon sheet, 21.6 Nm–1. Moreover, the bond strength between MLF and PET substrate became stronger than that between PPHFP and PET films.  相似文献   

3.
In open air and without any type of inert gas, stable and bright micro plasma was successfully obtained using Liquid Sampling Atmospheric Pressure Glow Discharge (LS-APGD). The discharge current varied between 20 to 80 mA with a maximum voltage 550 V, discharge gap 0.5–2 mm and solution pH of 1. The produced plasma operates in the normal glow discharge region at a low power (11–40 W). For analytical application the linear dynamic range is obtained up to 500 μg mL−1. Limits of detection based on 3σ of the background intensity determined for Ca I (422.673 nm), Cu I (324.754 nm), Fe I (497.5 nm), and Zn I (213.856 nm) are 0.3, 0.65, 0.1, 0.7 μg mL−1 respectively.  相似文献   

4.
常压辉光放电等离子体转化CH4制C2烃的研究   总被引:3,自引:0,他引:3  
王达望  马腾才 《化学学报》2006,64(11):1121-1125
采用新型的旋转电极辉光放电反应器, 在常温常压下对辉光等离子体作用下的甲烷转化制C2烃进行了研究. 在氢气共存条件下, 考察了反应器电极的结构、材料, 输入电场峰值电压和反应物流率等参数对甲烷转化率和C2烃单程收率及其选择性的影响规律, 同时比较了不同反应器的能量效率. 结果表明: 在本实验条件下, 金属铜材料好于不锈钢, 螺旋形结构优于三排圆盘结构. CH4转化率和C2烃选择性和收率均随输入电场峰值电压的升高而增大, 随反应物流量的增加而减小. 从CH4转化率、C2烃的收率和选择性的指标来评价这些反应器, 采用旋转螺旋状铜电极反应器时最好, 当反应物流量为60 mL/min时, 甲烷最高转化率为77.31%, 对应的C2烃收率和选择性分别为75.66%和97.88%; 当能量密度为800 kJ/mol时, 能效最高为13.5%.  相似文献   

5.
Novel types of non-thermal plasma sources at atmospheric pressure based on multi-pin DC (direct current) diffusive glow discharge and AC (alternative current) streamer barrier corona have been elaborated and tested successfully for cold surface treatment of polymer films [polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET),] and polyester fabric. Results on physical properties ofdischarges mentioned and output energy characteristics of new plasma sources as well as data on after-treatment changes in wettability of films and fabrics are presented. The main goal of this study was to find out the experimental conditions for gas discharge and surface processing to achieve a remarkable wettability change for a short treatment time.  相似文献   

6.
A novel-pulsed electrolyte cathode atmospheric pressure discharge (pulsed-ECAD) plasma source driven by an alternating current (AC) power supply coupled with a high-voltage diode was generated under normal atmospheric pressure between a metal electrode and a small-sized flowing liquid cathode. The spatial distributions of the excitation, vibrational, and rotational plasma temperatures of the pulsed-ECAD were investigated. The electron excitation temperature of H Texc(H), vibrational temperature of N2 Tvib(N2), and rotational temperature of OH Trot(OH) were from 4900?±?36 to 6800?±?108 K, from 4600?±?86 to 5800?±?100 K, and from 1050?±?20 to 1140?±?10 K, respectively. The temperature characteristics of the dc solution cathode glow discharge (dc-SCGD) were also studied for the comparison with the pulsed-ECAD. The effects of operating parameters, including the discharge voltage and discharge frequency, on the plasma temperatures were investigated. The electron number densities determined in the discharge system and dc-SCGD were 3.8–18.9?×?1014?cm–3 and 2.6?×?1014 to 17.2?×?1014?cm–3, respectively.  相似文献   

7.

The atmospheric pressure radiofrequency (RF) plasma polymerization of furan was carried out with the objective of synthesizing polyfuran thin film. The structure, compositions and morphology of the plasma deposited polyfuran film were investigated by Fourier transform infrared (FTIR), atomic force microscopy (AFM), ultraviolet‐visible absorption spectroscopy (UV‐vis) and thermogravimetric analysis (TGA). The formation of polyfuran was confirmed using FTIR and UV‐visible analysis. The properties of plasma‐deposited polyfuran were compared with those of chemically synthesized polyfuran. Although the plasma deposited thin film polyfuran shows lower thermal stability than that of chemically synthesized polyfuran. It has better solubility in CHCl3, also. Thin uniform polyfuran films are obtained in plasma assisted polyfuran deposition, while particles are obtained in chemical polyfuran polymerization.  相似文献   

8.
A method of plasma treatment in which a glow discharge was generated in the small gas gap between an electrode and a water surface was designed and employed in this study. By using this method, many active species were generated on the wastewater surface to degrade organic pollutants. The electric field distribution of the designed electrode model was simulated using the MAXWELL 3D® simulation software, and the discharge parameters were measured to investigate the impact of design optimization. In addition, we designed an equipotential multi-electrode configuration to treat a methyl orange solution and an azobenzene solution. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relatively low voltage and that the generated plasma covers a large area and is in a stable state. Accordingly, the method helped reduce the cost of the reactor and improved the effectiveness of wastewater treatment.  相似文献   

9.
Atmospheric plasma treatment is an effective and economical surface treatment technique. The main advantage of this technique is that the bulk properties of the material remain unchanged while the surface properties and biocompatibility are enhanced. Polymers are used in many biomedical applications; such as implants, because of their variable bulk properties. On the other hand, their surface properties are inadequate which demands certain surface treatments including atmospheric pressure plasma treatment. In biomedical applications, surface treatment is important to promote good cell adhesion, proliferation, and growth. This article aim is to give an overview of different atmospheric pressure plasma treatments of polymer surface, and their influence on cell-material interaction with different cell lines.  相似文献   

10.
Three methods have been examined for evaluating the concentration of nitrogen atoms in the afterglow of a nonequilibrium, helium-stabilized, atmospheric pressure plasma. These are nitric oxide titration, absolute emission intensity of N2(B 3g) and temporal decay of the N2(B 3g) emission. To employ the second method, the rate constants for the recombination of N atoms into N2(B 3g), at different vibrational levels of the B state, were determined. The third newly developed method has three advantages over the other two techniques: (1) it can predict the N-atom density for the entire afterglow, (2) it does not require calibration of the N2(B 3g) emission intensity, and (3) it does not disturb the gas flow. According to these measurements, the atmospheric pressure plasma produced a high density of nitrogen atoms, exceeding 4.0×1015 cm–3 at the edge of the discharge for 10 Torr N2 in 745 Torr He at 375 K and 15.5 W/cm3.  相似文献   

11.
Dielectric barrier discharge (DBD)-based plasma deposition at atmospheric pressure, using glycidyl methacrylate (GMA, methacrylic acid-[2,3-epoxy-propyl ester]) as a prototype precursor was investigated in order to evaluate the applicability of dielectric barrier discharges to obtain plasma polymers with a high degree of structural retention of the starting precursor. Using pulsed excitation of the discharge, up to about 90% of the epoxy groups of GMA can be retained in plasma polymers obtainableat deposition rates in the order of 3–5nm/s. Preliminary investigations of the mechanism of film formation under pulsed plasma conditions indicate that the reaction of intact monomer molecules withsurface radicals generated during the pulses play a prominent role.  相似文献   

12.
We compare two surface treatments of biaxially-oriented polypropylene (BOPP), which are carried out in the same dielectric barrier discharge (DBD) apparatus, namely air corona, and N2 atmospheric pressure glow discharge (APGD). Changes in the surface energy and chemistry are investigated by contact angle measurements, by X-ray photoelectron spectroscopy (XPS) and by attenuated total reflectance infrared spectroscopy (ATR-FTIR). It is shown that N2 APGD treatment leads to a higher surface energy than air corona treatment, and to the formation of mostly amine, amide, and hydroxyl functional groups at the polypropylene surface. Finally, hydrophobic recovery of the treated film is studied; for both treatment types, the increased surface energy is found to decay in a similar manner with increasing storage time after treatment.  相似文献   

13.
 The use of the change in the oscillation frequency of the current of a new atmospheric helium glow discharge for sensitive signal detection for gas chromatography is studied. The effluent of a capillary column is directed into the glow discharge cell perpendicular to the axis of the glow discharge that existed between a platinum anode and cathode. A stable discharge is obtained when several hundred volts are applied between the 0.2-mm gap between the anode and cathode. The effects of the electrode gap, discharge voltage and gas flow rate on the baseline frequency and discharge current were investigated. The chromatogram shows that the discharge current and discharge gap have a strong influence on the detector response. The discharge current shows positive peaks; however, frequency peaks are positive or negative depending on the discharge conditions. The response of the detector is in the femto-mole and pico-mole range for nonane and decane. Received August 5, 1997. Revision September 2, 1999  相似文献   

14.
The combination of plasma discharge and adsorption was examined for oxidation of dilute benzene in air in a plasma reactor packed with a mixture of BaTiO 3 pellets and porous Al 2 O 3 pellets (i.e., an alumina hybrid reactor). The oxidative decomposition of benzene was enhanced by the benzene concentrating on the Al 2 O 3 pellets. Furthermore, there was a higher selectivity to CO 2 in the products from the hybrid than from a plasma reactor packed with BaTiO 3 pellets alone. The presence of the Al 2 O 3 pellets suppressed the formation of N 2 O.  相似文献   

15.
We investigated the characteristics of atmospheric pressure (AP) air glow discharge with aqueous electrolyte cathode. Distilled water or aqueous solutions of HNO3, KCl, KBr and KI were utilized as a cathode. The cathode voltage drop, electric field strength, gas temperature as well as emission intensity of some lines of OI, H, K, Na and bands of N2, OH, NO were measured at discharge current from 10 to 50 mA. The procedure of gas temperature measurement on the base of non-resolved structure of N2(C3Πu → B3Πg) bands was described. The reduced electric field strength (E/N) was obtained, which showed that the discharge existed in the normal mode. On the base of these data, the regularities of optical emission were discussed.  相似文献   

16.
The aim of this paper is to show the possibility to synthesize silicon-based deposits on a polypropylene substrate, using a glow dielectric barrier discharge at atmospheric pressure, and to correlate the gas phase behavior with the properties of the thin film deposits. The discharge is generated in a mixture of nitrous oxide and silane, diluted in nitrogen. The influence of the [N2O]/[SiH4] ratio on the layer characteristics is mainly studied. Deposits are analyzed by XPS, SSIMS, AFM and wetting angle measurements. The discharges are also characterized by their optical emission spectra. Measurements are made as a function of the distance from the gas inlet, and they allow one to correlate these spectra with the film thickness and its chemical composition. Finally, chemical kinetics of the reactive gas decomposition reactions are proposed.  相似文献   

17.
大气压旋转螺旋状电极辉光放电等离子体催化甲烷偶联   总被引:2,自引:0,他引:2  
采用新研制的具有旋转螺旋状电极的大气压辉光放电等离子体反应器催化甲烷偶联制碳二烃. 实验采用铜电极和不锈钢电极分别考察了输入电场峰值电压和甲烷、氢气进料流量等参数对甲烷转化率和碳二烃收率、选择性的影响. 在长时间连续反应无明显积碳的情况下, 最佳试验结果是电极材料为金属铜, 进料流量为60 mL•min-1, V(CH4 )/V(H2)=1的条件下, 输入电场峰值电压为2.3 kV时, 甲烷转化率为70.64%, 碳二烃单程收率及其选择性分别为69.85%和 99.14%.  相似文献   

18.
Optical emission spectroscopy of the active species in N2 plasma is carried out to investigate their concentration as a function of discharge parameters such as filling pressure (2.0–7.0 mbar), source power (100–200 W) and gas flow rate (50–300 mg/min). The primary motivation of this work is to obtain reliable information about the concentration of the active species of N2 plasma, which play an important role in plasma surface nitriding processes. Emission intensity from the selected electronic excited states of molecular and atomic species is evaluated as a function of discharge parameters to investigate their concentration. The emission intensity ratio I(N2+)/I(N2) and I(N+)/I(N) of the electronic transitions is also evaluated as a function of discharge parameters to investigate the relative dependence of their concentrations. It is observed that the concentration of the active species of N2 plasma is strongly affected by the filling pressure and source power whereas flow rate has no significant effect. An increased occurrence of N2+ molecular ions in comparison with N2 molecules, and N+ ions in comparison with N atoms is observed with source power whereas decreased occurrence of N2+ molecular ions in comparison with N2 molecules, and N+ ions in comparison with N atoms is observed with the rise in filling pressure.  相似文献   

19.
Journal of Analytical Chemistry - The results of a study of the pathways of ion formation from organic compounds in Atmospheric Pressure Laser Plasma Ionization (APLPI) are presented. The...  相似文献   

20.
The effect of water vapor on benzene decomposition in air was investigatedusing a nonthermal-discharge plasma reactor packed with ferroelectricmaterials. The conversion of benzene was found to decrease with an increaseof water concentration. On the other hand, the selectivity to CO2 in thedecomposition products increased with an increase of water concentration. Acomparison between the benzene conversion to CO and CO2 suggested that COformation was suppressed by water to a greater extent than was CO2formation. N2O formation also decreased with an increase of waterconcentration. These results suggest that the activity of oxygen speciesresponsible for the formation of CO and N2O is reduced by water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号