首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticle self-assembly at liquid-liquid interfaces can be significantly affected by the individual nanoparticle charges. This is particularly true at ionic liquid (IL) based interfaces, where Coulombic forces play a major role. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) as a model IL, we have studied the self-assembly of hydrophobic nanoparticles with different surface charges at the IL/water and IL/oil (hexane) interfaces using molecular dynamics simulations. In the IL/water system, the nanoparticles were initially dispersed in the water phase but quickly equilibrated at the interface, somewhat in favor of the IL phase. This preference was lessened with increased nanoparticle charge. In the IL/hexane system, all charged nanoparticles interacted with the IL to some extent, whereas the uncharged nanoparticles remained primarily in the hexane phase. Potential of mean force calculations supported the observations from the equilibrium studies and provided new insights into the interactions of the nanoparticles and ionic liquid based interfaces.  相似文献   

2.
We report a molecular dynamics study of the interface between water and (macroscopically) water-immiscible room-temperature ionic liquids "ILs", composed of PF6(-) anions and butyl- versus octyl-substituted methylimidazolium+ cations (noted BMI+ and OMI+). Because the parameters used to simulate the pure ILs were found to exaggerate the water/IL mixing, they have been modified by scaling down the atomic charges, leading to better agreement with the experiment. The comparison of [OMI][PF6] versus [BMI][PF6] ILs demonstrates the importance of the N-alkyl substituent on the extent of solvent mixing and on the nature of the interface. With the most hydrophobic [OMI][PF6] liquid, the "bulk" IL phase is dryer than with the [BMI][PF6] liquid. At the interface, the OMI+ cations retain direct contacts with the bulk IL, whereas the more hydrophilic PF6(-) anions gradually dilute in the local water micro-environment and are thus isolated from the "bulk" IL. The interfacial OMI+ cations are ordered with their imidazolium moiety pointing toward the aqueous side and their octyl chains toward the IL side of the interface. With the [BMI][PF6] liquid, the system gradually evolves from an IL-rich to a water-rich medium, leading to an ill-defined interfacial domain with high intersolvent mixing. As a result, the BMI+ cations are isotropically oriented "at the interface". Because the imidazolium cations are more hydrophobic than the PF6(-) anions, the charge distribution at the interface is heterogeneous, leading to a positive electrostatic potential at the interface with the two studied ILs. Mixing-demixing simulations on [BMI][PF6]/water mixtures are also reported, comparing Ewald versus reaction field treatments of electrostatics. Phase separation is very slow (at least 30 ns), in marked contrast with mixtures involving classical organic liquids, which separate in less than 0.5 ns at the microscopic level. The results allow us to better understand the specificity of the aqueous interfaces with hydrophobic ionic liquids, compared with classical organic solvents, which has important implications as far as the mechanism of liquid-liquid ion extraction is concerned.  相似文献   

3.
We report a molecular dynamics (MD) study of the interfacial behavior of key partners involved in the Cs(+) cation extraction by a calix[4]arene-crown-6 host (L), comparing an ionic liquid (IL) to a classical molecular solvent (chloroform) as receiving "oil" phase. The IL is composed of hydrophobic 1-butyl-3-methylimidazolium cations (BMI(+)) and bis(trifluoromethylsulfonyl)imide anions (Tf(2)N(-)) and forms a biphasic system with water. The simulations reveal similarities but also interesting differences between the two types of interfaces. Much longer times are needed to "equilibrate" IL systems, compared to classical liquid mixtures, and there is more intersolvent mixing with the IL than with chloroform, especially concerning the water-in-oil content. There is also some excess of the BMI(+) cations over the Tf(2)N(-) anions in the aqueous phase. Simulations on the Na(+)NO(3)(-) and Cs(+)NO(3)(-) ions show that they sometimes interact at the interface with the IL ions, forming hydrated intimate ion pairs, whereas they are "repelled" by the classical interface. The LCs(+) complex and L ligand also behave differently, depending on the "oil phase". They are better solvated by the IL than by chloroform and thus poorly attracted at the IL interface, whereas they adsorb at the chloroform interface, adopting well-defined amphiphilic orientations. The results are discussed in the context of assisted ion transfer and provide a number of arguments explaining the specificity and efficiency of IL based, compared to classical extraction systems.  相似文献   

4.
We report a molecular dynamics study of biphasic systems involved in the rhodium-catalyzed hydroformylation of 1-hexene in the 1-butyl-3-methyl-imidazolium hexafluorophosphate ionic liquid ([BMI][PF(6)] IL). We first describe the neat [BMI][PF(6)] interfaces with hexene (the substrate) and heptanal (the linear reaction product) as organic phases. The former interface is molecularly sharp with BMI+ cations preferentially oriented "perpendicular" (i.e., pointing their butyl chains toward the organic phase), whereas hexene molecules tend to be somewhat parallel to the interface. The interface with heptanal is approximately twice as broad, due to BMI+...O(heptanal) attractions, and the solvent molecules are disordered at the interface. No IL ions solubilize in the organic phase(s) whereas ca. 2-3 hexene or heptanal molecules diffused into the IL phase. The presence of the CO and H2 gases does not modify the nature of the hexene/IL interface, as these gases are mainly solubilized in the organic phase, respectively, as diluted species and in the form of a "gaseous" droplet. In the IL phase, one finds a few CO monomers, whereas the less soluble H2 molecules spend only transient excursions. We next simulate the phase separation of "randomly mixed" IL/hexene liquids with the [RhH(CO)L(3)] precatalyst as a solute, comparing the PPh(3) to the TPPTS(3-) ligands (L). The phases separate much more slowly than in the case of classical liquids, and the neutral complex with PPh(3) ligands solubilizes in the hexene phase, displaying loose dynamical contacts with the IL interface. This contrasts with the -9 charged [RhH(CO)(TPPTS)(3)](9-) complex that sits "immobilized" on the IL side of the interface and is mainly solvated by BMI+ cations. Finally, we characterize the solvation of -6 charged [RhH(CO)(TPPTS)(2)](6-), [RhH(CO)(2)(TPPTS)(2)](6-), and [RhH(CO)(TPPTS)(2)(hexene)](6-) complexes involved as reaction intermediates in the hydroformylation reaction and of the free TPPTS(3-) ligand itself in the bulk IL.  相似文献   

5.
Properties of the surface of ionic liquids, such as surface tension, ordering, and charge and density profiles, were studied using molecular simulation. Two types of modification in the molecular structure of imidazolium cations were studied: the length of the alkyl side chain and the presence of a polar hydroxyl group at the end of the side chain. Four ionic liquids were considered: 1-ethyl-3-methylimidazolium tetrafluoroborate, [C(2)C(1)im][BF(4)]; 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [C(2)OHC(1)im][BF(4)]; 1-octyl-3-methylimidazolium tetrafluoroborate, [C(8)C(1)im][BF(4)] and 1-(8-hydroxyoctyl)-3-methylimidazolium tetrafluoroborate, [C(8)OHC(1)im][BF(4)]. The surface tension was calculated using both mechanical and thermodynamic definitions, with consistent treatment of the long-range corrections. The simulations reproduce the available experimental values of surface tension with a maximum deviation of ±10%. This energetic characterization of the interface is completed by microscopic structural analysis of orientational ordering at the interface and density profiles along the direction normal to the interface. The presence of the hydroxyl group modifies the local structure at the interface, leading to a less organized liquid phase. The results allow us to relate the surface tension to the structural ordering at the liquid-vacuum interface.  相似文献   

6.
We report molecular dynamics (MD) simulations of the aqueous interface of the hydrophobic [BMI][Tf2N] ionic liquid (IL), composed of 1-butyl-3-methylimidazolium cations (BMI+) and bis(trifluoromethylsulfonyl)imide anions (Tf2N-). The questions of water/IL phase separation and properties of the neat interface are addressed, comparing different liquid models (TIP3P vs TIP5P water and +1.0/-1.0 vs +0.9/-0.9 charged IL ions), the Ewald vs the reaction field treatments of the long range electrostatics, and different starting conditions. With the different models, the "randomly" mixed liquids separate much more slowly (in 20 to 40 ns) than classical water-oil mixtures do (typically, in less than 1 ns), finally leading to distinct nanoscopic phases separated by an interface, as in simulations which started with a preformed interface, but the IL phase is more humid. The final state of water in the IL thus depends on the protocol and relates to IL heterogeneities and viscosity. Water mainly fluctuates in hydrophilic basins (rich in O(Tf2N) and aromatic CH(BMI) groups), separated by more hydrophobic domains (rich in CF3(Tf2N) and alkyl(BMI) groups), in the form of monomers and dimers in the weakly humid IL phase, and as higher aggregates when the IL phase is more humid. There is more water in the IL than IL in water, to different extents, depending on the model. The interface is sharper and narrower (approximately 10 A) than with the less hydrophobic [BMI][PF6] IL and is overall neutral, with isotropically oriented molecules, as in the bulk phases. The results allow us to better understand the analogies and differences of aqueous interfaces with hydrophobic (but hygroscopic) ILs, compared to classical organic liquids.  相似文献   

7.
The influence of alkyl chain symmetry of the imidazolium cation on the structure and properties of the ionic liquid-vapour interface has been addressed through molecular dynamics simulations. The anion chosen is bis(trifluoromethylsulfonyl)imide (NTf(2)). Profiles of number densities, orientation of cations, charge density, electrostatic potential, and surface tension have been obtained. At the interface, both cations and anions were present, and the alkyl chains of the former preferred to orient out into the vapour phase. A large fraction of cations preferred to be oriented with their ring-normal parallel to the surface and alkyl chains perpendicular to it. These orientational preferences are reduced in ionic liquids with symmetric cations. Although the charge densities at the interface were largely negative, an additional small positive charge density has been observed for systems with longer alkyl chains. The electrostatic potential difference developed between the liquid and the vapour phases were positive and decreased with increasing length of the alkyl group. The calculated surface tension of the liquids also decreased with increasing alkyl chain length, in agreement with experiment. The surface tension of an ionic liquid with symmetric cation was marginally higher than that of one with an asymmetric, isomeric cation.  相似文献   

8.
A gold nanoparticle film for surface-enhanced Raman scattering (SERS) was successfully constructed by an ionic surfactant-mediated Langmuir-Blodgett (LB) method. The gold film was formed by adding ethanol to a gold colloid/hexane mixture in the presence of dodecyltrimethylammonium bromide (DTAB). Consequently, gold nanoparticles (AuNPs) assembled at the water/hexane interface due to the decrease in surface charge density of AuNPs. Since DTAB binds the gold surface by a coulombic force, rather than a chemical bonding, it is easily replaced by target molecules for SERS purposes. The SERS enhancement factor of the 80 nm gold nanoparticle film was approximately 1.2 × 10(6) using crystal violet (CV) as a Raman dye. The SERS signal from the proposed DTAB-mediated film was approximately 10 times higher than that from the octanethiol-modified gold film, while the reproducibility and stability of this film compared to an octanethiol-modified film were similar. This method can also be applied to other metal nanostructures to fabricate metal films for use as a sensitive SERS substrate with a higher enhancement factor.  相似文献   

9.
Liquid-liquid interfaces formed between water and ionic liquids serve as fluid scaffolds to self-assemble anionic nanospheres two-dimensionally. When aqueous dispersions of anionic fluorescent polystyrene nanospheres (diameter ~500 nm) are layered on ionic liquids, ordered monolayers are spontaneously formed at the interface. Fluorescent nanospheres are hexagonally packed in the interfacial monolayers, as observed by confocal laser scanning microscopy (CLSM). The adsorption and alignment of nanospheres at the interface are affected by the ionic strength and pH of the aqueous phase, indicating electrostatic interaction as the primary driving force for the self-assembly. CLSM observation of the water/ionic liquid interface reveals that the lower hemisphere of nanospheres is exposed to the ionic liquid phase, which effectively alleviates lateral electrostatic repulsion between charged nanospheres and promotes their close packing. The densely packed monolayer structure of nanospheres is stably immobilized on the surface of CLSM glass dishes simply by rinsing the ionic liquid layer with pure water, probably as a consequence of the gluing effect exerted by imidazolium cations. The fluidic nature of the water/ionic liquid interface facilitates the diffusion and ordering of nanospheres into a hexagonal lattice, and these features render the interface promising soft scaffolds to self-assemble anionic nanomaterials two-dimensionally.  相似文献   

10.
This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid–water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid–water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water–ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil or water is incorporated.  相似文献   

11.
This feature article describes recent advances in several areas of research involving the interfacial ordering of liquid crystals (LCs). The first advance revolves around the ordering of LCs at bio/chemically functionalized surfaces. Whereas the majority of past studies of surface-induced ordering of LCs have involved surfaces of solids that present a limited diversity of chemical functional groups (surfaces at which van der Waals forces dominate surface-induced ordering), recent studies have moved to investigate the ordering of LCs on chemically complex surfaces. For example, surfaces decorated with biomolecules (e.g., oligopeptides and proteins) and transition-metal ions have been investigated, leading to an understanding of the roles that metal-ligand coordination interactions, electrical double layers, acid-base interactions, and hydrogen bonding can play in the interfacial ordering of LCs. The opportunity to create chemically responsive LCs capable of undergoing ordering transitions in the presence of targeted molecular events (e.g., ligand exchange around a metal center) has emerged from these fundamental studies. A second advance has focused on investigations of the ordering of LCs at interfaces with immiscible isotropic fluids, particularly water. In contrast to prior studies of surface-induced ordering of LCs on solid surfaces, LC-aqueous interfaces are deformable and molecules at these interfaces exhibit high levels of mobility and thus can reorganize in response to changes in the interfacial environment. A range of fundamental investigations involving these LC-aqueous interfaces have revealed that (i) the spatial and temporal characteristics of assemblies formed from biomolecular interactions can be reported by surface-driven ordering transitions in the LCs, (ii) the interfacial phase behavior of molecules and colloids can be coupled to (and manipulated via) the ordering (and nematic elasticity) of LCs, and (iii) the confinement of LCs leads to unanticipated size-dependent ordering (particularly in the context of LC emulsion droplets). The third and final advance addressed in this article involves interactions between colloids mediated by LCs. Recent experiments involving microparticles deposited at the LC-aqueous interface have revealed that LC-mediated interactions can drive interfacial assemblies of particles through reversible ordering transitions (e.g., from 1D chains to 2D arrays with local hexagonal symmetry). In addition, recent single-nanoparticle measurements suggest that the ordering of LCs about nanoparticles differs substantially from micrometer-sized particles and that the interactions between nanoparticles mediated by the LCs are far weaker than predicted by theory (sufficiently weak that the interactions are reversible and thus enable self-assembly). Finally, LC-mediated interactions between colloidal particles have also been shown to lead to the formation of colloid-in-LC gels that possess mechanical properties relevant to the design of materials that interface with living biological systems. Overall, these three topics serve to illustrate the broad opportunities that exist to do fundamental interfacial science and discovery-oriented research involving LCs.  相似文献   

12.
The interfacial and bulk properties of submicron oil-in-water emulsions simultaneously stabilised with a conventional surfactant (either lecithin or oleylamine) and hydrophilic silica nanoparticles (Aerosil?380) were investigated and compared with emulsions stabilised by either stabiliser. Emulsions solely stabilised with lecithin or oleylamine showed poor physical stability, i.e., sedimentation and the release of pure oil was observed within 3 months storage. The formation and long-term stability of silica nanoparticle-coated emulsions was investigated as a function of the surfactant type, charge, and concentration; the oil phase polarity (Miglyol?812 versus liquid paraffin); and loading phase of nanoparticles, either oil or water. Highly stable emulsions with long-term resistance to coalescence and creaming were formulated even at low lecithin concentrations in the presence of optimum levels of silica nanoparticles. The attachment energy of silica nanoparticles at the non-polar oil-water interface in the presence of lecithin was significantly higher compared to oleylamine in line with good long-term stability of the former compared to the sedimentation and release of oil in the latter. The attachment energy of silica nanoparticles at the polar oil-water interface especially in the presence of oleylamine was up to five-times higher compared to the non-polar liquid paraffin. The interfacial layer structure of nanoparticles (close-packed layer of particle aggregates or scattered particle flocs) directly related to the free energy of nanoparticle adsorption at both MCT oil and liquid paraffin-water interfaces.  相似文献   

13.
We present molecular dynamics simulations of the air-liquid interface for three room temperature ionic liquids with a common anion: bis(trifluoromethylsulfonyl) imide ([Tf(2)N]), and imidazolium-based cations that differ in the alkyl tail length: 1-butyl-3-methylimidazolium ([C(4)mim]), 1-hexyl-3-methylimidazolium ([C(6)mim]), and 1-octyl-3-methylimidazolium ([C(8)mim]). The CHARMM type force field is used with the partial charges based on quantum calculations for isolated ion pairs. The total charge on cations and anions is around 0.9e and -0.9e, respectively, which somewhat mimics the anion to cation charge transfer and many-body effects. The surface tension at 300 K is computed using the mechanical route and its value slightly overpredicts experimental values. The air-liquid interface is analyzed using the intrinsic method of Identification of the Truly Interfacial Molecules. Structural and dynamic properties of the interfacial, sub-interfacial and central layers are determined. To describe the structure of the interface, we compute the surface roughness, number density and charge density profiles, and orientation ordering of the ions. We further determine the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to characterize the dynamics of the cations and anions in the layers. We found a significant enhancement of the cation density and preferential orientation ordering of both the cations and anions at the interface. Overall, the surface of the interfacial layer is smoother than the surface of the sub-interfacial layer and the roughness of both the interfacial and sub-interfacial layers increases with the increase of the length of the cation alkyl tail. Finally, the ions stay considerably longer in the interfacial layer than in the sub-interfacial layer and dynamics of exchange of the ions between the consecutive layers is related to the distinct diffusion and re-orientation dynamics behavior of the ions within the layers.  相似文献   

14.
This paper reports a methodology for preparing ordering hydrophilic metal nanoparticles into close-packed 2-dimensional arrays at a hexane-water interface with alkanethiol in the hexane layer. The destabilization of metal nanoparticles by the addition of alcohol caused the nanoparticles to adsorb to an interface where the surface of entrapped Au nanoparticle was in situ coated with the long-chain alkanethiols present in a hexane layer. The adsorption of alkanethiol to the nanoparticle surface caused the conversion of the electrostatic repulsive force to a van der Waals interaction, which is a key feature in forming highly ordered close-packed nanoparticle arrays.  相似文献   

15.
The adsorption of phase transfer catalysts, 18-crown-6 and dicyclohexano-18-crown-6, at the air/water and the hexane/water interfaces were investigated. Interfacial tension sigma decreased by increasing concentrations of these compounds and therefore both of these crown ethers are accumulated at interfaces. The variation of sigma with concentration for both compounds follows the Szyszkowski equation very well, from which the values of saturated surface densities and interaction parameters have been evaluated. On the basis of occupied surface area of each molecule, the orientation of each of molecules at the air/water and the hexane/water interfaces have been proposed. The present results show that dicyclohexano-18-crown-6 has the higher tendency not only to dissolve into the hexane phase but also to adsorb at the hexane/water interface than 18-crown-6 and that the Starks extraction mechanism was suggested for the present phase transfer catalysis systems.  相似文献   

16.
Here we report the synthesis of a new redox-active ionic liquid (IL), (ferrocenylmethyl)dodecyldimethylammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate that can be used to form the polarizable water│IL interface at an elevated temperature (43 °C). Experimental approach is based on the cyclic voltammetry of the charge transfer processes occurring at the IL membrane supported on a thin microporous filter. Evidence is provided of the interfacial electron transfer between the ferrocenated cation of IL and an electron acceptor, IrCl62?, in the adjacent aqueous phase.  相似文献   

17.
Reactions and charge transfer at cathode/electrolyte interfaces affect the performance and the stability of Li-ion cells. Corrosion of active electrode material and decomposition of electrolyte are intimately coupled to charge transfer reactions at the electrode/electrolyte interfaces, which in turn depend on energy barriers for electrons and ions. Principally, energy barriers arise from energy level alignment at the interface and space charge layers near the interface, caused by changes of inner electric (Galvani) potential due to interfacial dipoles and concentration profiles of electronic and ionic charge carriers.In this contribution, we introduce our surface science oriented approach using photoemission (XPS, UPS) to investigate cathode/electrolyte interfaces in Li-ion batteries. After an overview of the processes at cathode/electrolyte interfaces as well as currently employed analysis methods, we present the fundamentals of contact potential formation and energy level alignment (electrons and ions) at interfaces and their analysis with photoemission. Subsequently, we demonstrate how interface analysis can be employed in Li-ion battery research, yielding new and valuable insights, and discuss future benefits.  相似文献   

18.
Presence of inhomogeneous layered structures of ionic liquid (IL) molecules at IL/HOPG and IL/mica interfaces was directly detected and imaged by using frequency-modulation atomic force microscopy. High stability of the layered structures may disturb their interface applications to catalysis and electrochemistry.  相似文献   

19.
The self‐assembled structure of alkoxy‐ and N‐alkylcarbamoyl‐substituted zinc–tetraphenylporphyrin at the liquid–highly oriented pyrolytic graphite (HOPG) interface was observed by using scanning tunneling microscopy. The alkoxy porphyrin showed a phase transition from face‐on to edge‐on ordering. The phase transition requires the close‐packed structure of alkoxy porphyrin. The chronological change of the ordering was traced to show the existence of several types of Ostwald ripening including two‐step phase transition from small edge‐on to face‐on and then further to edge‐on orderings. On the other hand, the N‐alkylcarbamoyl porphyrin showed persistent edge‐on ordering, and the ordering was analyzed by the Moiré pattern. Although the edge‐on ordering is observed only in the nonpolar solvent, the orderings have potential applications in the charge and energy transfer.  相似文献   

20.
We report molecular dynamics studies on the solvation of sodium chloride in the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid ([BMI][Tf2N] IL). We first consider the potential of mean force for dissociating a single Na+Cl- ion pair, showing that the latter prefers to be undissociated rather than dissociated (by ca. 9 kcal/mol), with a free energy barrier of ca. 5 kcal/mol (at d approximately 5.2 A) for the association process. The preference for Na+Cl- association is also observed from a 100 ns molecular dynamics simulation of a concentrated solution, where the Na+Cl- ions tend to form oligomers and microcrystals in the IL. Conversely, the simulation of Na13Cl14- and Na14Cl13+ cubic microcrystals (with, respectively, Cl- and Na+ at the vertices) does not lead to dissolution in the IL. Among these, Na14Cl13+ is found to be better solvated than Na13Cl14-, mainly due to the stronger Na+...Tf2N- interactions as compared to the Cl-...BMI+ interactions at the vertices of the cube. We finally consider the solid/liquid interface between the 100 face of NaCl and the IL, revealing that, in spite of its polar nature, the crystal surface is solvated by the less polar IL components (CF3(Tf2N) and butyl(BMI) groups) rather than by the polar ones (O(Tf2N) and imidazolium(BMI) ring). Specific ordering at the interface is described for both Tf2N- anions and BMI+ cations. In the first IL layer, the ions are rather parallel to the surface, whereas in the second "layer" they are more perpendicular. A similar IL structure is found at the surface of the all-neutral Na0Cl0 solid analogue, confirming that the solvation of the crystal is rather "apolar", due to the mismatch between the IL and the crystal ions. Several comparisons with water, methanol, or different BMI+-based ILs as solvents are presented, allowing us to better understand the specificity of the ionic liquid-NaCl interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号