首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the sol-gel synthesis, structural characterization, and transport properties of a new solid solution of the general formula La(x)Bi(1-x)Fe(0.5)Cr(0.5)O(3) (0.4 ≤ x ≤ 1) are presented. The solubility limit x has been determined and variation of the lattice parameters measured through profile fitting. The cell parameters, space group, and atomic positions, as obtained by the Rietveld refinement of X-ray diffraction data, are reported. This analysis and electron diffraction studies as well do not reveal any evidence of Fe/Cr ordering. Regarding the transport properties, magnetic and electric characterizations are described. The electrical response with the temperature and frequency has been studied, and a "positive temperature coefficient" for the resistivity has been found for temperatures between 270 and 400 °C. The magnetic behavior is striking because, for all materials studied, zero-field-cooling curves appear above field-cooling ones, an anomalous feature that is interpreted as being due to complex ferromagnetic/antiferromagnetic interactions in the B perovskite sublattice.  相似文献   

2.
用固相烧结的方法成功制备了层状钙钛矿锰氧化物La1.2Sr1.8Cu0.04Mn1.96O7西多晶样品。研究发现,在层状钙钛矿La1.2Sr1.8Mn1.96O7中,用Cu替代Mn对其磁、电的性质影响非常显著。随温度的降低样品表现出从顺磁(PM)到铁磁(FM)及自旋玻璃态(SG)等复杂的磁相变行为。电性测量表明,在整个观察的温区内都表现出绝缘体或半导体的性质。对电阻率.温度曲线进行拟合表明:在低温区采用变程跳跃模型和在高温区采用小极化子模型都得到了较好的线性关系。  相似文献   

3.
The electrical and magnetic properties of Zn-doped Fe(3)O(4) at different doping concentrations of Zn have been investigated using a density functional method with generalized-gradient approximation corrected for on-site Coulombic interactions. The electronic structure calculation predicts that Zn(x)Fe(3-x)O(4) (0 ≤x≤ 0.875) is half-metallic with a full spin polarization. The hopping carrier concentration of Zn(x)Fe(3-x)O(4) decreases with increasing x, which indicates a distinct increase in the resistivity. The saturation magnetization of Zn(x)Fe(3-x)O(4) increases evidently with increasing x from x = 0 to x = 0.75 (i.e. from 4.0 to 8.3 μ(B)/f.u.) and then decreases rapidly to zero at x = 1. The robust half-metallicity, large tunability of electrical and magnetic properties of a Zn doped Fe(3)O(4) system make it a promising functional material for spintronic applications.  相似文献   

4.
Hybrid organic/inorganic nanocomposites based on manganese oxide nanoparticles enriched pyrogallol-formaldehyde matrix (PF/MnO) were synthesized by sol-gel technique. After a drying step, the samples were heated during 2 h at different pyrolysis temperatures between 600 and 1000 °C in tubular furnace under open nitrogen atmosphere. The obtained nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrical technics in the measurement temperature range between 80 and 300 K. The XRD spectra show that PF/MnO nanocomposites are crystallized with the appearance of different phases: the graphite (C), the manganese oxide (MnO), the metallic manganese (Mn) and the manganese dioxide (MnO2) with proportions depending on pyrolysis temperature. The measurement temperature dependence conductivity can be explained by Godet-Variable Range Hopping (3D-GVRH) conduction model in all samples with the presence of an exponential distribution of localized states. The voltage-current V(I) characteristics show the presence of negative differential resistance (NDR) in some samples. The ac conductance exhibits the dominance of hopping conduction mechanism and the Small Polaron Hopping (SPH) model. The Nyquist plots for the PF/MnO-650 °C nanocomposite obey at Cole-Cole model. The impedance spectra were fitted by an equivalent circuit involving two contributions attributed to grains and grain boundaries.  相似文献   

5.
Polyaniline/multiwalled carbon nanotube (PANI/MWNT) composites were prepared by in situ polymerization. Scanning electron microscope, X‐ray diffraction, Fourier transform infrared, Uv‐Visible spectroscopy, Fluorescence spectrophotometry were done to characterize the PANI/MWNT composites. Thermal stability was measured by thermogravimetry analysis. The thermal stability of PANI/MWNT composites becomes higher than PANI. Electrical transport properties of different PANI/MWNT composites were investigated in the temperature range 77 ≤ T ≤ 300 K with and without magnetic field up to 1 T. The dc resistivity of PANI/MWNT composites shows different behavior compared to the sample without MWNT. The room temperature dc magnetoconductivity of the samples is negative; however, its sign changes to positive by lowering the temperature, which has been explained by hopping type charge transport. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1767–1775, 2010  相似文献   

6.
A systematic investigation of structural, magnetic and magnetotransport behavior of La0.7Ca0.3?xAgxMnO3 manganites has been undertaken. The X-ray diffraction shows a structural transformation from orthorhombic to rhombohedral with increasing Ag concentration. The undoped and 10% Ag substituted samples exhibit double transition in M–T curves. The electrical resistivity in the entire temperature range is fitted to effective medium approximation and phase separation models. The sign of S changes from negative to positive with increase in Ag doping. The low temperature thermopower data has been fitted to an equation containing diffusion, magnon drag and phonon drag terms. The paramagnetic insulting part of the TEP data has been analyzed using small polaron hopping mechanism.  相似文献   

7.
The phase relations, crystal structure and thermoelectric properties of the type-I solid solution Ba(8)Ni(x)Si(46-x) were investigated. Based on X-ray diffraction, differential thermal analysis and electron probe microanalysis data, a partial phase diagram was constructed for the Si-rich part of ternary system Ba-Ni-Si at 800 °C. The solubility range of Ni in the clathrate-I phase at 800 °C was determined (2.9 ≤x≤ 3.8) and thermoelectric properties, namely electrical resistivity, Seebeck-coefficient and thermal conductivity, were measured in the temperature range from 300 to 850 K. A shift of the thermoelectric properties from a predominantly metallic to a more semiconducting behavior was observed for an increasing Ni-content. Density functional calculations revealed a significant decrease of the gap width in the density of states induced by the incorporation of Ni. Electrical resistivity and Seebeck coefficients for Ba(8)Ni(x)Si(46-x) with 3.3 ≤x≤ 3.8 have been modeled within the rigid band approximation.  相似文献   

8.
The electrical transport properties of nonstoichiometric EuGd2S4 prepared by heating under a high vacuum have been investigated. The samples heated were classified into two groups on the basis of their electrical transport behavior. One group comprised semiconducting materials heated at 1500 and 1600°C, for which the transport mechanism was found to be via electron hopping with activation energies ranging from 0.013 to 0.027 eV. Another group comprised metallic materials heated at 1700 and 1800°C. Their electrical transport was carried out through ordinary band conduction over the measured temperature range except at temperatures lower than 120°K, where hopping with a very small activation energy (~0.0035 eV) occurred predominantly.  相似文献   

9.
The charge transport properties of polymer matrix–carbon black composites are investigated in this study. Direct current conductivity is examined with varying parameters: the temperature and the conductive filler content. Conductivity data are analyzed by means of percolation theory, and both percolation threshold and critical exponent are determined at each of the examined temperatures. The temperature dependence of conductivity and the agreement of experimental results with the variable range hopping model reveal hopping conduction as the predominant transport mechanism, below and in the vicinity of the critical concentration of carbon black particles. At higher concentrations, the contribution of hopping transport to the overall conductivity is reduced and a balance between hopping and conduction via geometrical contact occurs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2535–2545, 2007  相似文献   

10.
The electrical conduction mechanisms of semicrystalline thermoplastic parylene C (-H(2)C-C(6)H(3)Cl-CH(2)-)(n) thin films were studied in large temperature and frequency regions. The alternative current (AC) electrical conduction in parylene C is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model at low [77-155 K] and high [473-533 K] temperature and the small polaron tunneling mechanism (SPTM) from 193 to 413 K within the framework of the universal law of dielectric response. The conduction mechanism is explained with the help of Elliot's theory, and the Elliot's parameters are determined. From frequency- and temperature-conductivity characteristics, the activation energy is found to be 1.27 eV for direct current (DC) conduction interpreted in terms of ionic conduction mechanism. The power law dependence of AC conductivity is interpreted in terms of electron hopping with a density N(E(F)) (~10(18) eV cm(-3)) over a 0.023-0.03 eV high barrier across a distance of 1.46-1.54 ?.  相似文献   

11.
采用溶胶-凝胶工艺制备了La  相似文献   

12.
吴勇  胡征  陈方  陈懿 《化学学报》2001,59(11):1904-1908
通过调变反应温度,制得了B含量变化范围较大的Fe100-xBx(x=23~40)系列纳米金属玻璃。用Mossbauer,ICP,XRD,TEM,DSC等实验手段,研究了制备条件对B含量的影响及其原因,样品的结构、晶化温度/微粒的聚集状态和表观粒度等物性与反应温度(B含量)的关系,揭示了Fe-B纳米金属玻璃的化学制备研究中反应温度的重要作用。  相似文献   

13.
Electrical conductivity and electron spin resonance (ESR) of pyrolyzed polyimides change drastically in air after passage of a characteristic time, which depends on the temperature and time of pyrolysis. Samples must be kept from air throughout the measurements. ESR and resistivity measurements in vacuum show that there are two types of magnetic species: localized and delocalized. A. variable-range hopping model is proposed as a possible mechanism for conduction.  相似文献   

14.
通过对Sr、Ba混合掺杂体系(x=0.27、0.165、0.06)和非计量体系Nd0.67SrxBaxMnOz(x=0.27.0.06),导电性能的研究发现:混合二价离子掺杂体系Nd0.67SrxBa0.33-xMnO3与单一二价离子掺杂体系(Nd0.67Sr0.33MnO3和Nd0.67Ba0.33MnO3)具有不同的导电机制,非计量比使Nd0.67SrxBaxMnOz体系出现晶格收缩,电阻率随温度的降低出现半导体-金属转变,与此同时体系的电阻率减小,另外还发现,Mn离子的非计量与A位离子的相比对体系晶格收缩和导电性能的影响都更为显著。  相似文献   

15.
Layered perovskite manganites with a nominal chemsitry of Sm2-2xSr1+2x-2yCa2yMn2O7(x=0.2, 0.3, 0.4, 0.5; y=0, 0.2, 0.3) were prepared using sol-gel method. The crystal structures of these compounds were studied by X-ray diffraction (XRD) and FTIR absorption spectra. The absorption peaks become weaker and move a little to higher frequency with increasing of Sm/Sr concentration. As the Sm doping increases to x=0.2 and x=0.3, the absorption peaks show a cubic structure character, reflecting that the samples suffer from a transition from tetragonal structure to cubic structure. This coincides with the X-ray diffraction results. The high temperature electrical properties were studied by conventional four-probe method. Although all samples exhibit the semiconductive behavior, lnρ-1 000/T curves are not linear and they obey the small polaron hopping mechanism. Moreover, the resistivity decreases with x reducing. This is due to that Sm doping increases the Jahn-Teller ion Mn3+/Mn4+ ratio, and decreases the eg bandwidth.  相似文献   

16.
La0.5Ba0.5CoO3中Y的替代效应   总被引:2,自引:3,他引:2  
用固相反应法制备了La0.5Ba0.5CoO3多晶材料,系统研究了Y的替代对材料磁性和输运特性的影响,结果发现,Y的掺入主要产生了两种效应,一是Y向Co的3d轨道产生了电荷转移,使分子磁矩下降,二是出现了Co离子的反铁磁交换作用,当Y含量少于或等于0.3时,材料中出现了自旋的非共线结构。当Y含量大于0.3时,材料从铁磁态为主转变为反铁磁态为主,对不同Y含量的材料,其导电机制都属于极化子的变程跳跃导电,随Y含量增加,材料电经迅速增大。  相似文献   

17.
YBaCo4O7+δ powders were obtained by standard solid state reaction und their structural, morphological and electrical properties carefully analyzed. The X-ray powder diffraction patterns showed reflexes corresponding to a pure hexagonal structure (space group P63mc). The lattice parameters resulted to be very close to those reported in the literature for high-quality samples. Raman spectra at room temperature allowed for identifying bands associated with vibrating modes of CoO4 and Y2O6 in tetrahedral and octahedral coordination, respectively. Additional bands, which seemed to stem from CoO in octahedral coordination, were also clearly identified. The dependence of the resistivity on temperature showed a semiconducting-like behavior and no indication of structural phase transition was observed up to temperatures as low as 20 K. The electronic transport mechanism in this material was analyzed within the framework of standard models as thermal activation, polaronic-type conductivity or Mott variable-range hopping. Contrary to some reports in the literature in which thermal activation was reported to be the main transport mechanism, careful analysis of the obtained resistivity data (this work) favored the variable-range hopping conduction model. Certainly, the experimental data recorded in a wide temperature range were well described by the function ρ(T) = ρ0exp[(T*/T)1/4]. The fit procedure yielded a temperature scale T*  106 K, similar to that found in other transition metal oxides. This parameter, in turn, allowed for estimating the density of states at the Fermi level N(EF) for this compound.  相似文献   

18.
系列陶瓷氧化物La0.67Sr0.33FexMn1-xO3(0.055x0.33)通过共沉淀法工艺合成获得.经X射线衍射分析表明,所得氧化物均为单相,属三方结构.在零场和外加磁场下的四极法电阻测试结果表明:所有样品都具有较大的磁电阻效应,当x<0.13时,样品的电阻率-温度曲线中均出现电阻率峰(电阻率出现从半导体性向金属性的转变),该电阻率峰处的温度(Tp)随x的增大而向低温区移动,磁电阻效应是负值;x=0.23时,样品已呈半导体性,磁电阻效应仍是负值;然而x=0.33时,样品虽也表现为半导体性,但其中的磁电阻效应出现奇特的正负交替转换.  相似文献   

19.
The Ln0.67Sr0.33Fe.Mn1-xO3(LSFMO)(0.05< x <0.33) systems have been synthesized by co-precipitation. The X-ray diffraction patterns indicates that these compounds are of single phase with rhombohedral structure. The resistivity of samples was measured in zero field and applied field (H=4000Oe) by a standard four-probe method. Large magnetoresistance (MR) was found in all samples. There is a resistivity transition peak in LSFMO (x ≦0.13) in which MR negative, the temperature (TP) at which the resistivity peak occurs decreases with the increasing of x. LSFMO (x=0.23) to which the large negative MR is still found is a semiconductor, It is unexpected that a peculiar alternative positive negative MR was found in LSFMO(x=0.33) which also is a semicondutor.  相似文献   

20.
The crystal structure and dielectric properties of slowly cooled A-site-deficient perovskites Li(x)Sr(x)La(2/3-x)□(1/3-x)TiO(3) (0.04 ≤ x ≤ 0.33) have been investigated by powder X-ray diffraction (XRD), impedance spectroscopy, and (7)Li NMR techniques. In this series, nominal vacancies decrease with Li content, but the total amount of A-site vacancies, n(t) = Li + □, participating in conduction processes remains basically constant. Rietveld analysis of the XRD patterns showed a change of symmetry from orthorhombic to tetragonal when the lithium and strontium contents increased above x = 0.08 and from tetragonal to cubic above x = 0.16. Structural modifications are mainly due to the cation vacancy ordering along the c axis, which disappear gradually when the lithium content increases. In agreement with the structural information, two lithium signals with different quadrupole constants are detected in (7)Li NMR spectra of orthorhombic/tetragonal phases, which have been associated with lithium in two crystallographic z/c = 0 and 1/2 planes of perovskites. In cubic samples, only a single narrow component, indicative of mobile species, was detected. Lithium motion was thermally activated, with activation energies going from 0.35 to 0.38 eV. Evolution of the bulk dc-conductivity preexponential factors along the series showed a maximum that has been first related to the dependence of lithium hopping on the lithium and vacancy concentrations. Finally, changes in the vacancy ordering, produced along the series, affect the dimensionality of the conductivity, indicating that not only the amount of vacancies but also its distribution are relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号