首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
离子交换膜中CdS单分散纳米晶的合成及其光学性质   总被引:5,自引:0,他引:5  
王世铭  刘平  付贤智 《物理化学学报》2005,21(10):1151-1155
以硫代乙酰胺(TAA)为前驱体, 采用液相反应在全氟磺酸离子交换膜(Nafion)中自组装得到了均匀分布、单分散的纳米CdS晶体;与文献报道的前驱体如Na2S和H2S不同, TAA可以在全氟磺酸离子膜中均匀扩散, 最终在Nafion薄膜中得到均匀分布的纳米CdS晶体. 利用高分辨电子显微镜(HRTEM)、X射线衍射仪(XRD)和能量散射X射线分析(EDXA)研究了Nafion薄膜模板中CdS纳米晶体的形成机理、晶粒大小和分布;采用紫外- 可见吸收光谱和荧光光谱分析了Nafion薄膜中单分散纳米CdS晶体的光学性质. 结果表明, 随CdS纳米晶体尺寸的减小, 量子尺寸效应明显增强;在紫外吸收谱中表现为吸收边明显蓝移, 而在光致发光谱中, 表现为带边发射的蓝移.  相似文献   

2.
Porous substrate-reinforced composite proton exchange membranes have drawn considerable attention due to their promising application to polymer electrolyte membrane fuel cells (PEMFCs). In the present study, we develop silica (SiO(2)) nanoparticles/polyetherimide (PEI) binders-coated polyimide (PI) nonwoven porous substrates (referred to as "S-PI substrates") for reinforced composite membranes. The properties of S-PI substrates, which crucially affect the performance of resulting reinforced composite membranes, are significantly improved by controlling the hygroscopic SiO(2) particle size. The 40 nm S-PI substrate (herein, 40 nm SiO(2) particles are employed) shows the stronger hydrophilicity and highly porous structure than the 530 nm S-PI substrate due to the larger specific surface area of 40 nm SiO(2) particles. Based on the comprehensive understanding of the S-PI substrates, the structures and performances of the S-PI substrates-reinforced composite membranes are elucidated. In comparison with the 530 nm S-PI substrate, the hydrophilicity/porous structure-tuned 40 nm S-PI substrate enables the impregnation of a large amount of a perfluorosulfonic acid ionomer (Nafion), which thus contributes to the improved proton conductivity of the reinforced Nafion composite membrane. Meanwhile, the reinforced Nafion composite membranes effectively mitigate the steep decline of proton conductivity with time at low humidity conditions, as compared to the pristine Nafion membrane. This intriguing finding is further discussed by considering the unusual features of the S-PI substrates and the state of water in the reinforced Nafion composite membranes.  相似文献   

3.
CdS/PAM nanocomposites have been successfully synthesized in situ via a ultrasound-assisted route under ambient condition, employing CdCl(2) and Na(2)S(2)O(3) as Cd(2+) and S(2-) ion sources and acrylamide (AM) and (NH(4))(2)S(2)O(8) as organic monomers and initiating reagents, respectively. The results from X-ray powder diffraction (XRD) analysis and the IR spectrum of the final product showed the formation of CdS nanoparticles and the polymerization of AM monomers. SEM observations showed that the CdS/PAM nanocomposites could film on the quartz substrate and some holes in which many nanorods regularly arranged distributed on the film. The UV-vis absorption and PL spectra of CdS/PAM nanocomposites obviously differed from those of CdS nanoparticles prepared under the same conditions due to the presence of PAM. The electrochemical research showed that CdS/PAM nanocomposites had a stronger ability to promote electron transfers between Hb and the Au electrode than CdS nanoparticles prepared under the same conditions. A possible formation mechanism was also suggested based on the results of experiments.  相似文献   

4.
Poly(arylene ether sulfone)-based ionomers containing sulfofluorenyl groups have been synthesized for applications to polymer electrolyte membrane fuel cells (PEMFCs). In order to achieve high proton conductivity and chemical, mechanical, and dimensional stability, the molecular structure of the ionomers has been optimized. Tough, flexible, and transparent membranes were obtained from a series of modified ionomers containing methyl groups with the ion-exchange capacity (IEC) ranging from 1.32 to 3.26 meq/g. Isopropylidene tetramethylbiphenylene moieties were more effective than the methyl-substituted fluorenyl groups in giving a high-IEC ionomer membrane with substantial stability to hydrolysis and oxidation. Dimensional stability was significantly improved for the methyl-substituted ionomer membranes compared to that of the non-methylated ones. This new ionomer membrane showed comparable proton conductivity to that of the perfluorinated ionomer membrane (Nafion 112) under a wide range of conditions (80-120 degrees C and 20-93% relative humidity (RH)). The highest proton conductivity of 0.3 S/cm was obtained at 80 degrees C and 93% RH. Although there is a decline of proton conductivity with time, after 10 000 h the proton conductivities were still at acceptable levels for fuel cell operation. The membranes retained their strength, flexibility, and high molecular weight after 10 000 h. Microscopic analyses revealed well-connected ionic clusters for the high-IEC membrane. A fuel cell operated using the polyether ionomer membrane showed better performance than that of Nafion at a low humidity of 20% RH and high temperature of 90 degrees C. Unlike the other hydrocarbon ionomers, the present membrane showed a lower resistance than expected from its conductivity, indicating superior water-holding capability at high temperature and low humidity.  相似文献   

5.
Langmuir--Schaefer films of Nafion with incorporated TiO(2) nanoparticles   总被引:1,自引:0,他引:1  
An easy method of incorporating TiO(2) nanoparticles into Nafion perfluorinated ionomer is proposed. Ultrathin films of Nafion were prepared by employing the Langmuir-Schaefer (LS) technique. The pressure-area isotherm study of a Langmuir monolayer of Nafion at the air-water interface on different concentrations of NaCl as the subphase allowed us to find the best experimental conditions for the deposition of stable Langmuir-Schaefer films. Incorporation of TiO(2) nanoparticles was performed by dipping Nafion LS films in a solution of TiO(2) nanoparticles. The uniformity of the TiO(2) incorporation was detected by UV-visible spectroscopy. The morphology of the Nafion, Nafion/TiO(2) nanoparticles thin films, and the changes due to the annealing procedure were investigated by atomic force microscopy. Interestingly, the AFM investigation showed that Nafion and Nafion/TiO(2) LS films have thermal stability up to 600 degrees C.  相似文献   

6.
Cadmium sulfide (CdS) nanoclusters were prepared by a freeze drying method from two types of cadmium carboxylates. One was cadmium methacrylates that were part of poly(methyl methacrylate) (PMMA) ionomer. The other was cadmium acetates that were dispersed in PMMA. X-ray diffraction was mainly used to study the formation and the size of nanoclusters. The size of CdS made from the ionomer was 0.9 nm, whereas that from the composite of cadmium acetate and PMMA was 2 nm. This was consistent with the size difference of the precursors of CdS: i.e., Cd carboxylate nanoclusters (ionic aggregates) were smaller in the ionomer than in the PMMA mixture, because ionic groups in the ionomer were constrained due to their connectivity to backbone chains and thus forming smaller ionic aggregates. Once stabilized, however, CdS nanocluster sizes were unchanged despite thermal treatments at up to 220 °C for 24 h for both systems. Structural transformations from a freeze dried cadmium carboxylate powder, to a CdS-containing powder, and to a heat-treated CdS-containing sample are speculated for both types of systems.  相似文献   

7.
Poly-(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP)/Nafion ionomer/aluminum oxy hydroxide nanocomposite membranes were prepared by phase inversion technique. The resultant membranes were subjected to protonic conductivity, methanol permeability, infra-red and thermogravimmetric analysis. The infra-red spectroscopic measurements revealed the presence of sulfonic acid groups in the composite membranes. The thermal stability and ionic conductivity of the polymer membranes have been greatly varied upon the addition of AlO[OH]n. Although the PVDF-HFP/Nafion/AlO[OH]n composite membranes have moderate protonic conductivity it has lower methanol permeability and may be considered as a candidate for DMFC applications.  相似文献   

8.
In this work, the effect of Nafion ionomer content on the structure and catalytic performance of direct CO polymer electrolyte membrane fuel cell(CO-PEMFC) by using Rh-N-C single-atom catalyst as the anode catalyst layers was studied. The ionic plaque and roughness of the anode catalyst layers increase with the increase of Nafion ionomer content. Furthermore, the contact angle measurement results show that the hydrophilicity of the anode catalyst layers also increases with the increase of Nafion ionomer content. However, when the Nafion ionomer content is too low, the binding between microporous layers, catalyst layers and membrane cannot meet the requirement for either electric conductivity or mass transfer. While Nafion ionomer content increased above 30%, the content of water in anode is difficult to control. Therefore, it was found that AN 30(30% Nafion ionomer content of anode) is the best level to effectively extend the three-phase boundary and improve CO-PEMFCs performance.  相似文献   

9.
Cu doped CdS nanophosphors were fabricated through Langmuir-Blodgett route for the first time. Precursors mixed Langmuir-Blodgett multilayers of cadmium arachidate-copper arachidate were used to grow doped sulfide nanoparticles within the organic matrix through postdeposition treatment with H(2)S gas. Changes in composition and layered structure of precursor multilayers were studied using Fourier transform infrared and x-ray reflection. Uptake of Cu in the multilayers was analyzed by inductively coupled plasma atomic emission spectroscopy measurements. Unannealed H(2)S exposed multilayers containing CdS nanoparticles show strong surface state emission centered at approximately 570 nm, whereas Cu doped CdS nanoparticles show orange-red luminescence. Photoluminescence (PL) spectra of annealed-Cu doped CdS nanoparticles show distinct Cu-related emission compared to annealed-undoped CdS nanoparticles. Power dependent PL measurements of annealed samples show that an efficient carrier recombination takes place at T(2) level of Cu(++). The carrier relaxation from the excitonic states to T(2) level results in the strong orange-red luminescence.  相似文献   

10.
To clarify the mechanisms of transport of ions and water molecules in perfluorosulfonated ionomer membranes for fuel cells, the temperature dependence of their transport behaviors was investigated in detail. Two types of Flemion membranes having different equivalent weight values (EW) were utilized along with Nafion 117 as the perfluorinated ionomer membranes, and H-, Li-, and Na-form samples were prepared for each membrane by immersion in 0.03 M HCl, LiCl, and NaCl aqueous solutions, respectively. The ionic conductivity, water self-diffusion coefficient (D(H)(2)(O)), and DSC were measured in the fully hydrated state as a function of temperature. The ionic conductivity of the membranes was reflected by the cation transport through the intermediary of water. Clearly, H(+) transports by the Grotthuss (hopping) mechanism, and Li(+) and Na(+) transport by the vehicle mechanism. The differences of the ion transport mechanisms were observed in the activation energies through the Arrhenius plots. The D(H)(2)(O) in the membranes exhibited a tendency similar to the ionic conductivity for the cation species and the EW value. However, no remarkable difference of D(H)(2)(O) between H- and the other cation-form membranes was observed as compared with the ionic conductivity. It indicates that water in each membrane diffuses almost in a similar way; however, H(+) transports by the Grotthuss mechanism so that conductivity of H(+) is much higher than that of the other cations. Moreover, the D(H)(2)(O) and DSC curves showed that a part of water in the membranes freezes around -20 degrees C, but the nonfreezing water remains and diffuses below that temperature. This fact suggests that completely free water (bulk water) does not exist in the membranes, and water weakly interacting with the cation species and the sulfonic acid groups in secondary and higher hydration shells freezes around -20 degrees C, while strongly binding water in primary hydration shells does not freeze. The ratio of freezing and nonfreezing water was estimated from the DSC curves. The D(H)(2)(O) in the membranes was found to be influenced by the ratio of freezing and nonfreezing water. DFT calculation of the interaction (solvation) energy between the cation species and water molecules suggested that the water content and the ratio of freezing and nonfreezing water depend strongly on the cation species penetrated into the membrane.  相似文献   

11.
Two classes of novel sulfonated phenylated polyphenylene ionomers are investigated as polyaromatic-based proton exchange membranes. Both types of ionomer possess high ion exchange capacities yet are insoluble in water at elevated temperatures. They exhibit high proton conductivity under both fully hydrated conditions and reduced relative humidity, and are markedly resilient to free radical attack. Fuel cells constructed with membrane-electrode assemblies containing each ionomer membrane yield high in situ proton conductivity and peak power densities that are greater than obtained using Nafion reference membranes. In situ chemical stability accelerated stress tests reveal that this class of the polyaromatic membranes allow significantly lower gas crossover and lower rates of degradation than Nafion benchmark systems. These results point to a promising future for molecularly designed sulfonated phenylated polyphenylenes as proton-conducting media in electrochemical technologies.  相似文献   

12.
Two classes of novel sulfonated phenylated polyphenylene ionomers are investigated as polyaromatic‐based proton exchange membranes. Both types of ionomer possess high ion exchange capacities yet are insoluble in water at elevated temperatures. They exhibit high proton conductivity under both fully hydrated conditions and reduced relative humidity, and are markedly resilient to free radical attack. Fuel cells constructed with membrane‐electrode assemblies containing each ionomer membrane yield high in situ proton conductivity and peak power densities that are greater than obtained using Nafion reference membranes. In situ chemical stability accelerated stress tests reveal that this class of the polyaromatic membranes allow significantly lower gas crossover and lower rates of degradation than Nafion benchmark systems. These results point to a promising future for molecularly designed sulfonated phenylated polyphenylenes as proton‐conducting media in electrochemical technologies.  相似文献   

13.
A high-performance ionic polymer–metal composite (IPMC) actuator based on a polyelectrolyte membrane has been constructed from a poly((t-butyl-styrene)-b-(ethylene-r-propylene)-b-(styrene-r-styrene sulfonate)-b-(ethylene-r-propylene)-b-(t-butyl-styrene)) (tBS-EP-SS-EP-tBS; SSPB) pentablock copolymer ionomer and the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMImTFSI). The SSPB copolymer ionomer had microphase-separated morphology comprising alternating styrene-rich ionic channel regions and aliphatic EP-rich non-ionic regions, on the several tens of nanometers scale (average diameter of ionic channel regions ca. 20 nm), whereas the most commonly used Nafion contained narrow ion clusters of less than 4 nm. The large ionic channels of SSPB enabled better transport of such bulky ions as IL ions, and endowed the SSPB–BMImTFSI membrane with ionic conductivity superior to that of the Nafion–BMImTFSI membrane (SSPB–BMImTFSI: 1.01 × 10?4 S/cm, Nafion–BMImTFSI: 0.49 × 10?4 S/cm). The SSPB–BMImTFSI membrane-based IPMC actuator generated a larger and faster electromechanical response than the Nafion-based IPMC.  相似文献   

14.
Proton exchange membranes (Nafion) have been studied using current sensing atomic force microscopy to examine the correlation between the surface morphology and the ionic domains, and to probe the local ionic conduction distribution in the membranes. It is found that the local ionic conduction generated from the current sensing images follows a Gaussian-like distribution, with the peak value and the width of the distribution increasing with the relative humidity in the sample chamber and, thus, the water content in the membranes. Two types of Nafion membranes, Nafion 112 and Nafion 117, were studied using the method. The implications of the distribution in relation to the ionic conducting channels in the membranes are discussed.  相似文献   

15.
The coupled nanocrystalline ZnO/ZnS was fabricated and immobilized in Nafion membrane by using sodium sulfide (Na2S) as the single anion precursor. The molar ratio of ZnO to ZnS can be controlled by simply adjusting the reaction time. The as-prepared ZnO/ZnS-Nafion samples were characterized by various methods, including optical absorption, X-ray diffraction and high-resolution transmission electron microscopy. These coupled ZnO/ZnS nanocrystals embedded in Nafion membrane displayed excellent photocatalytic activities for their efficient charge separation properties. A mechanism of ZnO/ZnS nanoparticle fabrication in Nafion was deduced from the solubility difference, and the photocatalytic mechanism of coupled ZnO/ZnS was discussed as well.  相似文献   

16.
The kesterite-structured semiconductor Cu2ZnSn(S,Se)4 (CZTSSe) is prepared by spin coating a non-hydrazine precursor and annealing at Se atmosphere. Local electrical and optoelectronic properties of the CZTSSe thin-film are explored by Kelvin probe force microscopy and conductive atomic force microscopy. Before and after irradiation, no marked potential bending and very low current flow are observed at GBs, suggesting that GBs behave as a charge recombination site and an obstacle for charge transport. Furthermore, CdS nano-islands are synthesized via successive ionic layer adsorption and reaction (SILAR) method on the surface of CZTSSe. By comparing the work function and current flow change of CZTSSe and CdS in dark and under illumination, we demonstrate photo-induced electrons and holes are separated at the interface of p-n junction and transferred in CdS and CZTSSe, respectively.  相似文献   

17.
Composite membranes, consisting of Nafion and inorganic oxide additives, are frequently discussed alternative materials to overcome the known low conductivity of pure Nafion at temperatures above 100 °C and at low relative humidity. It has been reported that under dry conditions, these membranes show enhanced water uptake and diffusion as compared to filler-free Nafion. This work focuses on the polymer mobility in Nafion/SiO(2) composites and on the impact of the silica particles on the polymer dynamics. [Nafion/(SiO(2))(X)] composite membranes (with X ranging from 0 to 15 wt%) in the dry and wet states were investigated by variable temperature solid-state (19)F NMR spectroscopy. (19)F T(1) and T(1ρ) relaxation times, and NMR lineshapes (linewidths and spinning sideband intensities) were analyzed to get information about the polymer mobility. It is found that Nafion composite membranes, in general, possess a higher mobility as compared to recast Nafion which is in agreement with previous results from conductivity studies. These findings are attributed to the ability of the SiO(2) particles to keep more water inside the composite membranes which also leads to a higher mobility of the polymer component. The results are further supported by the experimental (19)F{(1)H} CP/MAS NMR spectra. It is also shown that the structure of the composite membranes is more stable after dehydration, and possible condensation reactions are diminished in these membranes. In addition, the decrease in ionic exchange capacity after dehydration is less pronounced for the composite membranes as compared to filler-free Nafion.  相似文献   

18.
Decoration of TiO2 nanotube films (TiO2 nanotube arrays (TNAs)) with CdS nanoparticles has been pursued for a broad range of applications that goes from solar cells to biological sensors. In most synthesis methods, the scale-up of devices has been challenging due to the poor contact at the chalcogenide/oxide interface. In this work, we validate the electrochemical/thermal/chemical route as a superior strategy to sensitize TNAs with CdS nanoparticles when compared with conventional methods. The process consisted of (i) electrodeposition of cadmium on TNAs to ensure strong bonding between TiO2 and Cd precursor particles, (ii) air annealing of Cd-decorated TNAs to thermally oxidize cadmium to cadmium oxide, and (iii) total sulfurization of cadmium oxide to obtain CdS in an hexagonal phase matching that of TNAs. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses indicated the complete transformation of cadmium precursor particles into CdS and a good surface coverage of the internal/external walls of TNAs. When compared to samples prepared by successive ionic layer adsorption and reaction (SILAR), electrochemical impedance spectroscopy data revealed the improvement of the electrical properties of the TNA matrix due to the sulfurization process and a lower contact resistance at the CdS/TNA interface. These improvements explain the superior photoelectrochemical response of CdS/TNA photoelectrodes obtained by the electrochemical/thermal/chemical route.  相似文献   

19.
Nano-Titania/Nafion (TiO2/Nafion) hybrid membranes were prepared by recasting, using Nafion solution and TiO2 anatase hydrosol as the raw materials. The microstructure of the hybrid membrane was characterized by X-ray diffraction, high-resolution transmission electron microscopy (HR-TEM), X-ray Photoelectron Spectroscopy and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic properties of TiO2/Nafion hybrid membranes were evaluated. Furthermore, endurance of photocatalytic activity of the hybrid membrane was investigated. The results indicate that the TiO2 Nanoparticles are bounded to Nafion molecule via Ti-O-S bonds and the formed flocculates are distributed homogeneously throughout the recasting Nafion membrane, while the initial pure anatase TiO2 nanoparticles remain intact in re-crystallized membrane. The hybrid membranes possessed excellent photocatalytic activities with and without H2O2. Moreover, the degradation of photocatalytic activities has been better controlled with the presence of H2O2.  相似文献   

20.
In order to reduce the cost of membrane used in vanadium redox flow battery (VRB) system while keeping its chemical stability, Nafion/sulfonated poly(ether ether ketone) (SPEEK) layered composite membrane (N/S membrane) consisting of a thin layer of recast Nafion membrane and a layer of SPEEK membrane were prepared by chemical crosslink the sulfonic acid groups of different ionomer membranes. Scanning electron microscopy (SEM) and IR spectra analysis of the membrane showed that Nafion layer was successfully deposited on the SPEEK membrane surface and an integral layered membrane structure was formed. The area resistance and permeability of vanadium ions of membrane were also measured. It was found that N/S membrane have a very low permeability of vanadium ions accompanied by a little higher area resistance compared with Nafion membrane. As a result, the VRB single cell with N/S membrane exhibited higher coulombic efficiency and lower voltage efficiency compared with VRB single cell with Nafion membrane. Although N/S membrane delivered relatively lower energy efficiency compared with Nafion membrane, its good chemical stability and low cost make it a suitable substitute for Nafion membrane used in VRB system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号