首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple flow-switching device has been designed for use as a comprehensive two-dimensional gas chromatography modulator. The device is constructed from fused silica tubing, t-unions, and a solenoid valve. A series of experiments were conducted to determine the influence of primary flow, secondary flow, modulation time, and device dimensions on the performance of the modulator. The flow-switching device was found to produce pulses with widths near the theoretical minimum. High-performance was maintained over a wide range of modulation times. The flow-switching device did not introduce extra broadening along the primary retention axis. However, the modulator performance was optimal only over a narrow range of primary to secondary flow ratios. The ideal flow ratio is determined by the dimensions of the tubes that connect the t-unions. A simple flow resistance model has been developed that can predict the dimensions that will produce optimal results for a specified primary to secondary flow ratio. Thus, it is possible to construct a device that operates near the theoretical limit without numerous alterations. Under optimal conditions, the flow switching modulator generates peaks that are narrower than those produced by a diaphragm valve.  相似文献   

2.
赵彦  徐董育  林浩学  陈晓燕  陈泽勇 《色谱》2014,32(6):662-665
建立了一种采用填充柱切割-反吹二维气相色谱分析汽油中酯类化合物(包括乙酸乙酯、乙酸仲丁酯、碳酸二甲酯)的方法。利用非极性填充预柱将汽油中沸点低于正辛烷的轻组分保留进入分析柱,重组分反吹放空,轻组分和酯类化合物经一个装填有强极性固定相的色谱柱分离分析。采用外标法定量,3种酯类化合物在50~50000 mg/L范围内线性关系良好,相关系数(r2)分别为0.99999、1.00000和0.99995,标准样品6次重复性测定的相对标准偏差(RSD)均小于1.0%,回收率在98.7%~107.9%之间,方法检出限(S/N=3)为5 mg/L。该方法不需要进行样品前处理,具有操作简单,准确高效的特点,是汽油中酯类化合物测定的理想分析方法。  相似文献   

3.
Sulfur-containing compounds in diesel have been speciated by comprehensive two-dimensional gas chromatography (GCxGC) with a sulfur chemiluminescence detector (SCD). The advantages of GCxGC technique are higher resolution and greater sensitivity. GCxGC-SCD can achieve the class separation of sulfur-containing compounds with an appropriate separation column combination. The major classes of sulfur-containing compounds in diesel are benzothiophenes and dibenzothiophenes. Relative concentration of each class as well as each carbon number family can be quantitated by the summation of the integrated areas corresponding to the individual group(s) in the GCxGC space. In practical applications, GCxGC-SCD can be used to characterize different diesels and to reflect desulfurization process efficiency. In this study, GCxGC-SCD has demonstrated its value in speciation of sulfur-containing compounds classes, which is difficult to accomplish by any other single technique.  相似文献   

4.
This paper reports an analytical method for separating, identifying, and quantifying sulfur-containing compounds in crude oil fraction (IBP-360 degrees C) samples based on comprehensive two-dimensional gas chromatography coupled with a sulfur chemiluminescence detector. Various sulfur-containing compounds and their groups were analyzed with one direct injection. 3620 peaks were detected including 1722 thiols/thioethers/ disulfides/1-ring thiophenes, 953 benzothiophenes, 704 dibenzothiophenes, and 241 benzonaphthothiophenes. The target sulfur compounds and their groups were identified based on the group separation feature and structured retention of comprehensive two-dimensional gas chromatography as well as standard substances. The quantitative analysis of major sulfur-containing compounds and total sulfur was based on the linear response of the sulfur chemiluminescence detector using the internal standard method. The sulfur contents of target sulfur compounds and their groups in 4 crude oil fractions were also determined. The recoveries for standard sulfur-containing compounds were in the range of 90-102%. The quantitative result of total sulfur in the Oman crude oil fraction sample was compared with those from ASTM D 4294 standard method (total S by X-ray fluorescence spectrometry), the relative deviation (RD%) was 4.2% and the precision of the method satisfactory.  相似文献   

5.
Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the characterization of aromatic compounds present in extra heavy gas oil (EHGO) from Brazil. Individual identification of EHGO compounds was successfully achieved in addition to group-type separation on the chromatographic plane. Many aromatic hydrocarbons, especially polycyclic aromatic hydrocarbons and sulfur compounds, were detected and identified, such as chrysenes, phenanthrenes, perylenes, benzonaphthothiophenes and alkylbenzonaphthothiophenes. In addition, triaromatic steroids, methyl-triaromatic steroids, tetrahydrochrysenes and tetraromatic pentacyclic compounds were present in the EHGO aromatic fractions. Considering the roof-tile effect observed for many of these compound classes and the high number of individual compounds identified, GC×GC-TOFMS is an excellent technique to characterize the molecular composition of the aromatic fraction from EHGO samples. Moreover, data processing allowed the quantification of aromatic compounds, in class and individually, using external standards. EHGO data were obtained in μgg(-1), e.g., benzo[a]pyrene were in the range 351 to 1164μgg(-1). Thus, GC×GC-TOFMS was successfully applied in EHGO quantitative analysis.  相似文献   

6.
Valve based/flow modulated comprehensive two-dimensional gas chromatography-flame ionization detection (GC x GC-FID) was used for quantification of C6 through C12 aromatic hydrocarbons by carbon number in gasolines. A 0.53 mm i.d. non-polar first dimension column was coupled to a 0.53 mm i.d. polar second dimension column through a double loop eight port valve modulator. Depending on the sample type, normalized percent and internal standard (I.S.) quantification was performed. For normalized percent quantification, a one-point calibration performed with one aromatic compound per carbon number/class provided an average % accuracy of 2.1% and a short-term n--1 relative standard deviation of 1.0%. For total aromatic compounds good agreement with the more complex conventional multidimensional GC technique was obtained. However, GC x GC has certain advantages over most other methods, mainly increased selectivity for total and carbon number aromatic content. The identification of the aromatic hydrocarbons was confirmed by GC x GC-MS.  相似文献   

7.
Nitrogen-containing compounds in diesel fuel have been speciated by comprehensive two-dimensional gas chromatography with nitrogen chemiluminescence detector (GC x GC-NCD). The speciation of nitrogen-containing compounds in diesel is difficult because of low concentration and complexity. The advantages of GC x GC are improved resolution and enhanced sensitivity. GC x GC-NCD can achieve the type and class separation of nitrogen-containing compounds with an appropriate separation column combination. Diesel contains both neutral (indoles and carbazoles) and basic (pyridines and quinolines) nitrogen-containing compounds. Relative concentrations of each class as well as each carbon number family can be quantified by integrating their peak volumes. This study demonstrates the capability of GC x GC-NCD for speciation of nitrogen-containing compound classes.  相似文献   

8.
The determination of polycyclic aromatic hydrocarbon (PAH) metabolites in human urine is the method of choice for assessing exposure to carcinogenic compounds. The objective of this study was the development of a comprehensive two-dimensional gas chromatography (GC × GC) method using a flame ionisation detector (FID) to simultaneously determine 10 hydroxylated PAH. The method was based on enzymatic deconjugation, liquid–liquid extraction, and trimethylsilyl (TMS) derivatization of the analytes by microwave heating. Satisfactory separation was achieved. The coefficient of variance was 3.8–12.8%. LOD was 0.03–0.18 μg/L, and LOQ was 0.1–0.5 μg/L. The mean recovery was 76%. The method was applied to the analysis of urine from smokers and non-smokers.  相似文献   

9.
A method to detect potential adulteration of commercial gasoline (Type C gasoline, available in Brazil and containing 25% (v/v) ethanol) is presented here. Comprehensive two-dimensional gas chromatography with flame ionization detection (GCxGC-FID) data and multivariate calibration (multi-way partial least squares regression, N-PLS) were combined to obtain regression models correlating the concentration of gasoline on samples from chromatographic data. Blends of gasoline and white spirit, kerosene and paint thinner (adopted as model adulterants) were used for calibration; the regression models were evaluated using samples of Type C gasoline spiked with these solvents, as well as with ethanol. The method was also checked with real samples collected from gas stations and analyzed using the official method. The root mean square error of prediction (RMSEP) for gasoline concentrations on test samples calculated using the regression model ranged from 3.3% (v/v) to 8.2% (v/v), depending on the composition of the blends; in addition, the results for the real samples agree with the official method. These observations suggest that GCxGC-FID and N-PLS can be an alternative for routine monitoring of fuel adulteration, as well as to solve several other similar analytical problems where mixtures should be detected and quantified as single species in complex samples.  相似文献   

10.
Separations of 12 compound classes, polychlorinated biphenyls (PCBs), diphenyl ethers (PCDEs), naphthalenes (PCNs), dibenzothiophenes (PCDTs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), terphenyls (PCTs) and alkanes (PCAs), toxaphene, organohalogenated pesticides (OCPs), and polybrominated biphenyls (PBBs) and diphenyl ethers (PBDEs) by comprehensive two-dimensional gas chromatography were evaluated. Five column combinations, DB-1 x 007-210, DB-1 x HT-8, DB-1 x LC-50, DB-1 x 007-65HT and DB-1 x VF-23ms were used to study, primarily, group-type separations, but attention was devoted also to within-class separation, especially for those classes which were not addressed in much detail before, the PCNs, OCPs, PBBs and PCTs. The DB-1 x 007-210 column set did not offer any extra separation compared to one-dimensional GC. For the DB-1 x HT-8 column combination, the useful principle of congener separation on the basis of number of halogen substituents in a molecule was confirmed (PCBs, toxaphene) and extended (PCTs, PBDEs). No practically useful group-type separation was observed for this column combination. The DB-1 x LC-50 set provides group separation based on planarity: planar compounds such as PCDDs, PCDFs, PCDTs and PCNs are much more retained than, and therefore separated from, non-planar analytes. Within the classes of PCBs, PBBs and PCTs highly useful separation of planar from non-planar compounds was also observed. The DB-1 x 007-65HT column set effectively separates PCAs and PBDEs from all other compound classes, and provides a good separation of brominated and chlorinated analogue classes from each other. This column set was the most efficient one for within-class separation of OCPs and PCNs. Finally, DB-1 x VF-23ms yields excellent within-class separations, especially of non-aromatic compounds, viz. OCPs, toxaphene and PCAs. No group separation was observed here. The applicability of the approach was demonstrated for a sediment extract and a dust extract. In the sediment extract, PCDDs, PCDFs, PCAs and PCNs were identified and their efficient separation was achieved. In the dust sample, separation of PCAs and PBDEs was achieved and several new PBDE congeners were identified.  相似文献   

11.
A new method for performing comprehensive GC x GC in the stop-flow mode is presented. A device was used to pneumatically stop the flow in the first dimension ((1)D) (by applying pressure pulses at the junction between the two columns), while flow was maintained in the second dimension ((2)D). This allowed for better preservation of resolution in the (1)D of the GC x GC chromatograms, and the extension of the (2)D's separation space, reducing or eliminating the extent of wraparound. When increased flow rates in the (2)D were used, sensitivity enhancements were also observed.  相似文献   

12.
13.
After a previous investigation of carbonyl compounds in the in-oven top note of roast beef [S. Rochat, A. Chaintreau, J. Agric. Food Chem. 53 (2005) 9578], this paper focuses on the role of sulfur compounds. Because of the complexity of the roast beef headspace where sulfur compounds occur in trace amounts, a high resolution and sensitive technique, comprehensive two-dimensional gas chromatography (GC x GC), was chosen, that allowed the detection of thousands of compounds in the oven headspace. As identifying all of them would be too time consuming, a strategy had to be developed to extract the pertinent information. More than 70 sulfur compounds were found by GC x GC hyphenated to time-of-flight mass spectrometry (TOF-MS), and the identity of 50 of them was confirmed. To overcome the absence of many retention indices in databanks, the missing values were simulated using a multiple linear regression to help the peak identification. The selection of the most important sulfur odorants from this list was achieved by GC-olfactometry, using the GC-"SNIF" technique. Seven compounds have been found for the first time in beef aroma, of which only one has been previously found in nature.  相似文献   

14.
The identification of compounds by using gas chromatography (GC) in samples with significant complexity comprising a range of isomeric species, where characterization is based on peak retention times and mass spectra, generates uncertainty for the analyst. This leads to identification errors. The most reliable way to confirm the identification of each compound is based on authentic standard co-injection, which in several cases is economically prohibitive, and often unachievable in the time available for analysis. Retention index procedures are important tools to minimize misidentification of compounds in conventional chromatography. The introduction of comprehensive two-dimensional GC (GC × GC) for analysis of complex samples was a decisive step to increase the analytical capacity of chromatographic techniques. For many samples, the chromatographic resolution increase leads to quantitative expansion in the number of peaks identified, compared with conventional GC analysis. Notwithstanding this improved resolution, limitations still persist in correct peak identification, which suggests the use of retention indices may assist in supporting component identification in this important technique. In this work, approaches to use of the retention index in GC × GC are discussed, based on an evaluation of the literature in this area. Interpretation of effective chain length data for fatty acid methyl esters in the first and second dimensions is presented.  相似文献   

15.
Comprehensive two-dimensional gas chromatography (GCxGC) is used to analyze petroleum diesel, biodiesel, and biodiesel/petroleum diesel blends. The GCxGC instrument is assembled from a conventional gas chromatograph fitted with a simple, in-line fluidic modulator. A 5% phenyl polydimethylsiloxane primary column is coupled to a polyethylene glycol secondary column. This column combination generates chromatograms where the fatty acid methyl esters (FAMEs) found in biodiesel occupy a region that is also populated by numerous cyclic alkanes and monoaromatics found in petroleum. Fortunately, the intensities of the petroleum hydrocarbon peaks are far lower than the intensities of the FAME peaks, even for blends with low biodiesel content. This allows the FAMEs to be accurately quantitated by direct integration. The method is calibrated by analyzing standard mixtures of soybean biodiesel in petroleum diesel with concentrations ranging from 1 to 20% v/v. The resulting calibration curve displays excellent linearity. This curve is used to determine the concentration of a B20 biodiesel/petroleum diesel blend obtained from a local retailer. Excellent precision and accuracy are obtained.  相似文献   

16.
The estimation of physicochemical parameters such as distillation points and relative densities still plays an important role in the quality control of gasoline and similar fuels. Their measurements according to standard ASTM procedures demands specific equipments and are time and work consuming. An alternative method to predict distillation points and relativity density by multivariate analysis of comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) data is presented here. Gasoline samples, previously tested according to standard methods, were used to build regression models, which were evaluated by external validation. The models for distillation points were built using variable selection methods, while the model for relativity density was built using the whole chromatograms. The root mean square prediction differences (RMSPD) obtained were 0.85%, 0.48%, 1.07% and 1.71% for 10, 50 and 90% v/v of distillation and for the final point of distillation, respectively. For relative density, the RMSPD was 0.24%. These results suggest that GC×GC-FID combined with multivariate analysis can be used to predict these physicochemical properties of gasoline.  相似文献   

17.
Coal is a non renewable fossil fuel, used mainly as a source of electrical energy and in the production of coke. It is subjected to thermal treatment, pyrolysis, which produces coke as a main product, in addition to a condensed liquid by-product, called tar. Tar is a complex mixture of organic compounds which contains different chemical classes, presenting aromatic and sulphur heterocyclic compounds. In general, identification of these compounds requires steps of isolation and fractionation, mainly due to co-elution of these compounds with polyaromatic hydrocarbons (PAH). The objective of this work is to characterize the sulphur compounds present in the coal tar obtained via pyrolysis, using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detector (GC×GC/TOFMS). Coal samples from the State of Paraná, Brazil were subjected to laboratorial scale pyrolysis. Several experimental conditions were tested, such as sample weight (5, 10 and 15g), heating ramp (10, 25 and 100°C/min) and final temperature (500, 700 and 900°C). Samples were analyzed by one dimensional gas chromatography (1D-GC) coupled to a quadrupole mass spectrometry detector (GC/qMS) and two-dimensional gas chromatography with time-of-flight mass spectrometry detector (GC×GC/TOFMS). The higher amount of sulphur compounds was obtained at a final temperature of 700°C and a heating ramp of 100°C/min. The main classes observed in the color plot were thiophenes, benzothiophenes and alkylated dibenzothiophenes. GC×GC/TOFMS allowed the identification of the greater number of compounds and the separation of several sulphur compounds from one another. Moreover, separation of sulphur compounds from polyaromatic hydrocarbons and phenols was achieved, which was not possible by 1D-GC. Comparing GC×GC/TOFMS and 1D-GC (SIM mode) also showed that 1D-GC, one of the most employed quantification tools for sulphur compounds, can be misleading for detection, identification and quantification, as the number of isomers of sulphur compounds found was greater than theoretically possible.  相似文献   

18.
Pulsed flow modulation (PFM) is based on higher flow rate time compression of the first GC column effluent, which prior to the injection into the second column is stored for a few seconds in a standard fused silica wide bore transfer line. We constructed the PFM device with two standard 1/16 in. brass compression fittings with the insertion of the two columns inside the wide bore 0.53 mm i.d. fused silica storage transfer line for the elimination of dead volumes. This simple arrangement provides a combination of flexibility in the length of the sample storage transfer line hence comprehensive two-dimensional gas chromatography (GC x GC) cycle time, inert sample path and full elimination of cooling gas consumption. A record short second column injection time of 20 ms is demonstrated. Practical injection times are the sample collection time (such as 4s) divided by the second to first column flow rate ratio (such as 20/0.7), which is typically around 150 ms. Due to the low cost of the device it can also be considered for use with non comprehensive time segmented GC x GC to remove a few accidental coelutions. PFM-GCxGC excels with high second column capacity due to the use of 0.32 mm i.d. columns with high flow rates as the second dimension GC x GC column. As a result, PFM-GCxGC can have up to two orders of magnitude higher second column sample capacity and linear dynamic range for improved reduction of adverse matrix interference effects due to column overloading.  相似文献   

19.
The detector is an integral and important part of any chromatographic system. The chromatographic peak profiles (i.e. peak separation) should, ideally, be unaffected by the detector--it should only provide the sensing capacity required at the end of a column separation process. The relatively new technique of comprehensive 2-D GC (GC x GC) extends the performance of GC manyfold, but comes at a price--existing GC systems may not be adequately designed with the requirements of GC x GC in mind. This is primarily the need for precise measurement of very fast peaks entering the detector (e.g. as fast as 50 ms basewidth in some instances). The capacity of the detector to closely track a rapidly changing chromatographic peak profile depends on a number of factors, such as design of flow paths and make-up gas introduction, type of detector response mechanism, and the chemistry of the response. These factors are discussed here as a means to appreciate the technical demands of detection in GC x GC. The MS detector will not be included in this review.  相似文献   

20.
A simple flow-switching device has been developed as a differential flow modulator for comprehensive two-dimensional gas chromatography (GC x GC). The device is assembled from tubing, four tee unions, and a solenoid valve. The solenoid valve is located outside the oven of the gas chromatograph and is not in the sample path. The modulation technique has no inherent temperature restrictions and passes 100% of the primary column effluent to the secondary column(s). Secondary peaks are produced with widths at half maximum less than 100 ms when operating in GC x 2GC mode with a 2.0 s modulation period. The efficacy of this approach is demonstrated through the analysis of a standard mixture of volatile organic compounds (VOCs) and diesel fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号