首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米nah高化学反应活性   总被引:1,自引:0,他引:1  
纳米氢化钠;氯苯氢解;肉桂醛选择还原;二甲亚砜金属取代反应;烯烃催化加氢  相似文献   

2.
本文研究了稀土氯化物对碱金属氢化反应的催化作用。金属钠在稀土氯化物LnCl~3(Ln=La,Nd,Sm,Dy,Yb)和萘的催化下,在常压、40℃下能与氢气反应,生成氢化钠;稀土氯化物的催化活性顺序为LaCl~3>NdCl~3>SmCl~3>DyCl~3>YbCl~3。金属锂可发生类似反应,生成LiH;但其反应动力学曲线与金属钠相比明显不同。稀土氯化物对金属钾的氢化反应不显示催化作用。对反应机理的初步探索表明:碱金属与萘反应生成的阴离子自由基型物种可能是氢化反应的中间体,稀土氯化物的作用是催化该中间体的氢化反应。该反应的产物是一类大比表面积(NaH的比表面积为83m^2/g)、多孔性固体粉末,在空气中可自燃。它们具有比一般市售碱金属氢化物高得多的反应活性,并能与过渡金属配合物组成高活性烯烃加氢催化。  相似文献   

3.
提出了带有不同取代基的茂钛配合物与纳米氢化钠(NaH)组成的高活性加氢催化剂,在常温常压下,取代茂钛配合物TiCl2/NaH对1-己烯的加氢反应有极高的初始活性,TOFmax达到110molH2/(molTi.s),催化转换数达到22200molH2/(molTi)。该催化体系对底物有明显的专一选择性,只有端烃才能发生加氢反应,且无民构化副反应发生,纳米氢化钠的助剂作用是该催化体系高活性关键因素。  相似文献   

4.
Selective hydrogenation of olefins with water as the hydrogen source at ambient conditions is still a big challenge in the field of catalysis. Herein, the electrocatalytic hydrogenation of purely aliphatic and functionalized olefins was achieved by using graphdiyne based copper oxide quantum dots (CuxO/GDY) as cathodic electrodes and water as the hydrogen source, with high activity and selectivity in aqueous solution at high current density under ambient temperature and pressure. In particular, the sp-/sp2-hybridized graphdiyne catalyst allows the selective hydrogenation of cis-trans isomeric olefins. The chemical and electronic structure of the GDY results in the incomplete charge transfer between GDY and Cu atoms to optimize the adsorption/desorption of the reaction intermediates and results in high reaction selectivity and activity for hydrogenation reactions.  相似文献   

5.
The mechanism of the IndolPhos–Rh‐catalyzed asymmetric hydrogenation of prochiral olefins has been investigated by means of X‐ray crystal structure determination, kinetic measurements, high‐pressure NMR spectroscopy, and DFT calculations. The mechanistic study indicates that the reaction follows an unsaturate/dihydride mechanism according to Michaelis–Menten kinetics. A large value of KM (KM=5.01±0.16 M ) is obtained, which indicates that the Rh–solvate complex is the catalyst resting state, which has been observed by high‐pressure NMR spectroscopy. DFT calculations on the substrate–catalyst complexes, which are undetectable by experimental means, suggest that the major substrate–catalyst complex leads to the product. Such a mechanism is in accordance with previous studies on the mechanism of asymmetric hydrogenation reactions with C1‐symmetric heteroditopic and monodentate ligands.  相似文献   

6.
IntroductionTitanium metallocenes have been widelystudied as the catalysts for the hydrogenation ofunsaturated hydrocarbons[1— 13 ] .In 1 963,Sloan etal.[1] reported that alkoxyltitanium compounds orCp2 Ti Cl2 with trialkylaluminium acted as goodcatalysts for the hydrogenation of olefins.Then,many active catalystsystems have been developed.The anchoring of titanocene species on supportsyields even more active and more stablehydrogenation catalysts[12 ,13 ] .Various reductives,such as Li Al…  相似文献   

7.
A nove l mesoporous zirconium phosphonate hybrid bentonite (MZrPHB ) catalyst was prepared for the removal of trace olefins from refining aromat ic oil. Pyridine-FTIR, NH3?TPD, XRD, and N2 adsorptiondesorption analysis were applied to characterize acidic properties and textural properties of catalysts. And its olefins removal performance of MZrPHB catalyst was evaluated in comparison with commercial clay catalyst. It is found that the MZrPHB catalyst possesses an abundance of weak Lewis acid centers, large surface area, and regular mesopore, and thus, exhibits a longer treat life and higher olefins conversion compared to commercial clay catalyst. MZrPHB prepared in this report can be considered as a promising and superior alternative material to commercial clays for the purification of aromatics.  相似文献   

8.
lntroductionInordcrtoselcctivcl}'produccIightoIcfinsfroms}'ngas.thcbinderusedforimprovingthecatal}'ststrcngthshouldbcfavorabIcforprimary'formingofligl1tolcfinsfroms}ngasandforprohibitingsidereactionsoflightoIcfi.sIll.lthasbccnshownthattheundesirablcstrengthofsilicalitc-2zcolitccanbcimprovcdb}addingbindcrs.Hot`ycver.thcadditionofthcbinder`"illcauscsomcchangcsinthcph}'sical-chcmicalstatcofthecatal}ticactivemetalas``cllasitscatal}ticbcha.io,ll'2I.InourprcviouspaperTiO2wasprovedtobcadcsirablcbi…  相似文献   

9.
N2O pretreatment has shown to result in enhancement of the performance of fresh commercial Pd-Ag/α-Al2O3 catalyst during selective acetylene hydrogenation. However, it showed no effect for the used and regenerated catalysts probably due to changes int he metal arrangement on the catalyst surface after regeneration.  相似文献   

10.
The hydrogenation of 1,3-pentadiene into pentenes over the commercial 0.5% Pd/Al2O3 catalyst and over a new catalyst containing 1.0% Pd and 3.7% Ag (μ-catalyst) has been investigated. The new catalyst has been prepared via the flameless wave conversion of cyclotrimethylenetrinitramine in a porous composite. The catalytic properties of the new composite in the hydrogenation reaction depend on the hydrogen/1,3-pentadiene ratio and on the catalyst activation temperature. The reaction conditions for selective 1,3-pentadiene hydrogenation have been optimized. The pentenes yield as a function of temperature passes through a maximum at any H2/C5H8 ratio between 1 and 2. The 2-pentene/1-pentene ratio in the reaction products increases as the temperature is raised.  相似文献   

11.
王旭  李军  卢胜梅    李灿 《催化学报》2015,(8):1170-1174
喹啉不对称氢化反应是不对称氢化研究的重点之一。其氢化产物四氢喹啉不仅是重要的有机合成中间体,同时也是自然界中生物碱的结构单元和生物活性化合物。周永贵研究组首次报道了手性(R)-MeO-Biphep/Ir体系成功用于喹啉的不对称催化,取得了非常好的反应结果。随后他们对喹啉底物进行了拓展,包括拥有特殊取代基的喹啉衍生物,均取得了良好的反应结果。后来多个研究组对该反应进行了深入研究并开发出了多个不同手性膦配体的Ir催化体系。虽然喹啉不对称氢化反应取得了很大的发展,但是该均相反应体系只能在高的反应催化剂用量下才能实现好的结果。进一步研究发现手性配体与金属Ir络合后形成反应活性物种,但后者可发生二聚或三聚,生成的产物是不具有催化活性的,从而导致了反应体系需要高的催化剂的用量。为此人们做了大量研究。范青华研究组通过对BINAP基团上嫁接大空间位阻的枝状分子合成了一系列新的手性BINAP配体,在与Ir络合后,表现出远高于均相催化剂的反应活性,且可循环利用。在该体系中,大位阻的枝状分子起到了阻隔活性物种二聚、三聚的作用,因而提高了反应活性。后来周永贵研究组也尝试通过改变有机配体的方法来实现高的反应活性。他们选择改变手性双膦配体上P原子所连接有机配体的空间位阻来实现对活性物种多聚的控制。实验同样取得了很好的反应效果。对于均相反应体系,我们只能通过这种改变有机配体空间位阻的方式来降低活性物种多聚的可能性,那么如何彻底阻止这种多聚呢?非均相体系给我们提供了很好的研究思路,但如何将非均相体系引入到喹啉不对称氢化反应体系当中成为了难点。
  共轭微孔聚合物(CMPs)的发展使得手性催化体系很容易从均相转变到非均相。这种材料具有较高的比表面积和固定的开放孔道结构,可应用于非均相催化中。且制备相对容易。我们可以将手性双膦配体作为材料制备配体嫁接到CMPs材料当中。在这种材料当中,手性配体会以有序、空间分离的方式分布,在与Ir配合后应用于喹啉不对称氢化反应中,从而从根本上避免了活性物种多聚的可能因此反应活性提高。我们曾首次成功合成了一系列含有手性(R)-Binap基团的共轭微孔聚合材料-BINAP-CMPs,并将其用于β-酮酸酯的不对称氢化反应当中,取得了很好的催化效果。手性BINAP基团均匀、有序地分散于该材料中。我们尝试利用BINAP-CMPs固有的空间隔离效应,将其应用于喹啉的不对称氢化反应中,结果表明,在相同条件下,非均相BINAP-CMPs/Ir催化体系的TOF值是340 h–1,是均相BINAP/Ir体系(100 h–1)3倍,反应的对映体选择性与均相相当;另外该催化体系多循环利用次后仍可以保持高的反应活性。我们还发现材料结构性质对反应结果的影响很大,材料的比表面积和孔容更大反应结果更好。  相似文献   

12.
The catalyst precursor preparedin situ from rhodium dimer [Rh(cod)Cl]2 and a new water-soluble phosphine Ph2PCH2CH2CONHC(CH3)2CH2SO3H (in Li+ salt form) has been found to act as an effective olefin hydrogenation catalyst. Catalytic hydrogenation reactions have been tested in either two phase: aqueous catalyst/insoluble olefin or methanolic catalyst/olefin systems. The observed reaction rates were higher for terminal than for internal olefins. 1-Hexene in methanolic solution has been hydrogenated with a turnover frequency of about 8000 h–1. This system has also been applied in the form of a supported aqueous phase catalyst.  相似文献   

13.
Fumed silica, silica gel, silica-alumina and cross-linked (5.5%) polystyrene have been functionalized with quaternary ammonium groups and the Chini cluster [Pt12(CO)24]2− has been anchored onto these functionalized materials by ion pairing. A catalyst has also been prepared by the adsorption of Na2[Pt12(CO)24] on unfunctionalized fumed silica. The catalytic activities of the resultant materials, and that of commercially purchased 5% platinum on alumina have been studied for the hydrogenation of a variety of unsaturated compounds. The substrates studied are: α-acetamidocinnamic acid, cyclohexanone, acetophenone, methyl pyruvate, ethyl acetoacetate, nitrobenzene and benzonitrile. Compared to the polystyrene supported catalyst, the inorganic oxide supported catalysts have higher surface areas and for most of the substrates have notably higher activities. The functionalized fumed silica-based catalyst gives higher conversions than functionalized silica gel and silica-alumina-based catalysts. In the hydrogenation of acetophenone and ethyl acetoacetate, the functionalized fumed silica-based catalyst show superior activity compared to the commercial platinum catalyst, and the catalyst made by conventional adsorption method. In benzonitrile hydrogenation with all the cluster-derived catalysts a hydrazine derivative is selectively formed, but when the commercial platinum catalyst is used benzyl amine is the main product.  相似文献   

14.
Two types of organic–inorganic hybrid base catalysts are prepared. Organic-functionalized molecular sieves (OFMSs); in particular, “amine-immobilized porous silicates” are designed based on common idea to immobilize catalytic active sites on silicate surface. Silicate–organic composite materials (SOCMs), such as “ordered porous silicate–quaternary ammonium composite materials”, are the precursors of ordered porous silicates obtained during the synthesis. Both the OFMS and the SOCM are used as the catalysts for Knoevenagel condensation and Michael addition reactions. Among the OFMSs, there is clear tendency that the use of molecular sieve with larger pore volume and/or surface area gives the product in higher yield. Aminopropylsilyl (AP)-tethered mesoporous silicate such as AP-MCM-41 gives the Knoevenagel condensation product in high yield under mild conditions. No loss of activity is observed after repeated use for three times. The SOCMs are also active for the same reaction. The OFMSs are effective when the supports have large pore volume and/or surface area and the reaction is carried out in polar solvents ethanol and DMF. However, the activity of the OFMSs is considerably low in a non-polar solvent such as benzene. In contrast, the SOCMs are remarkably active in benzene. The organic cation–MCM-41 composite is more active than the composite of an organic cation and a microporous silicate such as zeolite beta and ZSM-12. In the SOCM catalysts, (SiO)3SiO(+NR4) moieties located at the accessible sites are considered to play some important roles. The active species are absent in the liquid phase after the reaction. The recycle of the catalyst was possible without significant loss of activity when the substrates are enough reactive. The mechanism of the reaction over SOCM catalyst is discussed.  相似文献   

15.
Polypropylene (PP) was pyrolysed over spent FCC commercial catalyst (FCC-s1) using a laboratory fluidised-bed reactor operating isothermally at ambient pressure. The influence of reaction conditions including catalyst, temperature, and ratio of polymer to catalyst feed and flow rates of fluidising gas was examined. The yield of gaseous and liquid hydrocarbon products at 390 °C for spent FCC commercial catalyst (87.8 wt%) gave much higher yield than silicate (only 17.1 wt%). Greater product selectivity was observed with FCC-s1 as a post-use catalyst with about 61 wt% olefins products in the C3-C7 range. The selectivity could be further influenced by changes in reaction conditions. Valuable hydrocarbons of olefins and iso-olefins were produced by low temperatures and short contact times used in this study. It is also demonstrated that a post-use catalyst system under appropriate conditions the resource potential of polymer waste can be economically recovered and also can address the recycling desire to see an alternative to solve a major environment problem.  相似文献   

16.
The synthesis of hydrocarbons from hydrogenation of carbon dioxide has been studied on a series of coprecipitated iron-manganese catalysts. Kinetic measurements, X-ray diffraction, Mössbauer spectroscopy, and temperature-programmed reaction of adsorbed species were used for activity tests and catalyst characterizations. The results showed that the yields of low-carbon olefins decrease, whereas the amount of methane increases with increasing manganese content in catalysts. The conversion to hydrocarbons is suppressed by the reverse water-gas shift (RWGS) reaction equilibrium. Mössbauer spectra and XRD patterns of catalysts after reaction indicate that catalysts are severely oxidized; it is speculated that the olefin producing surface structure in CO hydrogenation may be destroyed by this oxidation. A pulse-reactor study of the Boudouard reaction showed that manganese has the effect of suppressing CO dissociation and thus decreasing carbon content on catalysts. For CO2 hydrogenation, the affinity to carbon on catalysts is important; therefore manganese is not a good promoter. Among all catalysts tested, pure iron has the best selectivity to olefinic and long-chain hydrocarbons.  相似文献   

17.
The complex [Ir(σ-carb)(CO)(PhCN)(PPh3)], where carb = -7-C6H5-1,2C2B10H10, was found to be an effective catalyst for homogeneous hydrogenation of terminal olefins and acetylenes at room temperature and atmospheric or subatmospheric hydrogen pressure. Internal olefins are not hydrogenated, but simple alk-1-enes are readily converted into the corresponding alkanes. Isomerization of the double bond catalyzed by the metal complex occurs at very small extent. Catalytic hydrogenation of olefins having carboxylate substituents on the unsaturated carbon atoms is prevented by the formation of thermally stable chelate hydridoalkyl complexes of the type I(H)(σ-CHRCHR′C(O)OR″) (σ-carb)(CO)(PPh3)]. Acetylenes are hydrogenated to alkenes. The alk-1-enes formed in the hydrogenation of the alkynes HCCR in turn undergo the more slow reactions either of hydrogenation to alkanes or isomerization to internal olefins which cannot be further hydrogenated. Hydrogenation of alkynes of the type RCCR′ is stereospecifically cis, yielding cis- olefins. Catalyzed cistrans isomerization reaction of these internal olefins occurs only to a negligeable extent.  相似文献   

18.
Hydrodesulfurization of Selective Catalytic Cracked Gasoline   总被引:1,自引:0,他引:1  
Hydrodesulfurization (HDS) reaction of catalytic cracked gasoline (CCG) on Co–Mo/γ-Al2O3 was investigated in detail to make clear the important factors for deep HDS of CCG. A CCG containing 229 ppm sulfur and 30.4 vol% olefins was used in this study. Eleven alkylthiophenes and 2 alkylbenzothiophenes, 3 alkylthiacyclopentanes, and 2 disulfides were identified in this CCG by means of GC-AED analyses. In the reaction at 220 °C and 1.6 MPa using a conventional flow reactor of bench pilot scale, these sulfur compounds were hydrodesulfurized, whereas thiols were produced from H2S and olefins. The reactions of thiophene HDS, isoolefin and n-olefin hydrogenation (HG) were studied to clarify the active sites on the catalyst. First, the effect of H2S on the reaction was examined. The HG of n-olefin as well as thiophene HDS was inhibited by H2S, while the HG of isoolefin was promoted. The effects of Co on these three reactions were also examined over the catalysts with different Co/(Co + Mo) ratios. Thiophene HDS was promoted by Co, while isoolefin HG was little affected and n-olefin HG was largely retarded. From these examinations, three types of active sites for thiophene HDS, isoolefin HG and n-olefin HG were proposed. Oligomers of isoolefins were found in the isoolefin hydrotreated product. The possibility of improving the HDS selectivity by carbonaceous deposit was investigated for HDS reactions of CCG and model compounds. The coking pretreatment was carried out on the catalyst and each reaction was examined. HDS selectivity (higher activity for HDS and lower activity for olefin HG) on CCGHDS was improved. Relative deactivation was in the following order, isoolefin HG > thiophene HDS > n-olefin HG. Pyridine modification (i.e. pyridine injection at 150 °C and partial pyridine desorption at 300 °C) was investigated on thiophene and olefins reaction. Thiophene HDS was little affected. Olefin HG and thiol production reaction were strongly inhibited. Improvement of HDS selectivity was observed in the reactions of CCG after pyridine modification. Improvement of HDS selectivity by pyridine modification was considered to result from the selective deactivation of the active sites for olefin reactions (hydrogenation and thiol production).  相似文献   

19.
High selectivity to light alkenes can be achieved from CO and CO_2hydrogenation over K-Fe-MnO/Si-2 catalyst.The alkene selectivity isinsensitive to reaction temperature for CO hydrogenation,while apparentlyincreases for CO_2 hydrogenation with raising reaction temperature.An increasein alkene selectivity is observed for both CO and CO_2 hydrogenation with GHSVrising,While a decrease with the elevation of reaction pressure for both CO/H_2and CO_2/H_2 reaction.A two-step mechanism is suggested forCO_2 hydrogenation to form hydrocarbons,by which the variations incontributions of CO and HC as products of CO_2/H_2 reaction with change ofreaction temperature,GHSV and pressure are explained.Moreover,thecatalyst is favorable for selective production of light olefins,which can alsoconcern the slightly secondary reactions of light olefins to some extent.  相似文献   

20.
以超细Fe-Mn催化剂为前驱体,对其进行了CH4/H2气氛下的高温碳化及反应行为研究。结果表明,高温碳化后,催化剂比表面积明显降低,主要物相结构为FeO-MnO尖晶石和α-Fe相,并有大量碳化铁微晶生成。在CO加氢反应中,碳化过程明显提高了烯烃选择性,降低了CH4选择性,促进了链增长。结果认为,碳化过程改变了催化剂表面化学性质,增强了表面碱性,抑制了二次加氢反应,提高了烯烃选择性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号