首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively.  相似文献   

2.
Yuan  Ai-Hua  Lu  Lu-De  Shen  Xiao-Ping  Chen  Li-Zhuang  Yu  Kai-Bei 《Transition Metal Chemistry》2003,28(2):163-167
A cyanide-bridged FeIII–FeII mixed-valence assembly, [FeIII(salen)]2[FeII(CN)5NO] [salen = N,N-ethylenebis(salicylideneiminato)dianion], prepared by slow diffusion of an aqueous solution of Na2[Fe(CN)5NO] · 2H2O and a MeOH solution of [Fe(salen)NO3] in an H tube, has been characterized by X-ray structure analysis, i.r. spectra and magnetic measurements. The product assumes a two-dimensional network structure consisting of pillow-like octanuclear [—FeII—CN—FeIII—NC—]4 units with dimensions: FeII—C = 1.942(7) Å, C—N = 1.139(9) Å, FeIII—N = 2.173(6) Å, FeII—C—N = 178.0(6)°, FeIII—N—C = 163.4(6)°. The FeII—N—O bond angle is linear (180.0°). The variable temperature magnetic susceptibility, measured in the 4.8–300 K range, indicates the presence of a weak intralayer antiferromagnetic interaction and gives an FeIII–FeIII exchange integral of –0.033 cm–1.  相似文献   

3.
Reaction of either K3[Fe(CN)6] or K4[Fe(CN)6] with a macrocyclic CuII complex, [Cu(teta)](ClO4)2 (teta = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacylotetradecane), in aqueous solution gave the same product as shown by spectroscopic and physicochemical characterisation. The crystal structure of the complex shows that it is a one-dimensional linear chain type heterobinuclear FeIII–CuII polymer. The unit is composed of a [Cu(teta)(H2O)2]2+ cationic complex, a FeIII–CuII alternate linear chain unit, a ClO 4 ion and four water molecules. The Cu atom is coordinated in a distorted octahedral arrangement by four nitrogen atoms from one teta ligand and two nitrogen atoms of the bridging cyanide groups. The Cu—N bond distances involving the cyanide bridges, 2.522(7) and 2.608(7)Å, respectively, indicate weak antiferromagnetic interactions between the FeIII and CuII atoms.  相似文献   

4.
The title compound, potassium bis(ethylenediamine‐N,N′)copper(II) hexacyanoferrate(III), K[Cu(C2H8N2)2]‐[Fe(CN)6], contains [Cu(en)2]2+ and [Fe(CN)6]3? complex ions, where en is ethylenediamine. The FeIII and K+ ions lie on twofold axes and the CuII atom lies on an inversion center. The [Cu(en)2]2+ ion has square‐planar coordination with a mean Cu—N distance of 1.992 (2) Å and the [Fe(CN)6]3? ion has distorted octahedral coordination with a mean Fe—C distance of 1.947 (2) Å.  相似文献   

5.
Abstract

In the mixed-valence complex [RuIII(NH3)5(μ-dpypn)FeII(CN)5] with the flexible bridging ligand 1,3-di(4-pyridyl)propane (dpypn), electrostatic interactions between the {Ru(NH3)5}3+ and {Fe(CN)5}3? moieties drive a strong bending of dpypn and approximation of the RuIII and FeII centers, from which the enhanced electronic coupling between metal ions produces an intense intervalence-transfer absorption in the near-infrared region. Density functional theory calculations corroborate both the electrostatic bending in this heterobinuclear complex and a linear geometry in the homobinuclear counterparts [Ru(NH3)5(μ-dpypn)Ru(NH3)5]5+ and [Fe(CN)5(μ-dpypn)Fe(CN)5]5?, for which no evidence of electronic coupling was found because of the separation between metal centers. Furthermore, the heterobinuclear species formed an inclusion complex with β-cyclodextrin where the imposed linear geometry prevents significant electronic coupling and intervalence charge transfer between the RuIII and FeII centers.  相似文献   

6.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

7.
It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal‐to‐metal charge transfer (MMCT) and spin‐crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII‐triazole moiety and generates a mixed‐valence complex {[(Tp4‐Me)FeIII(CN)3]9[FeII4(trz‐ph)6]}?[Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 ; trz‐ph=4‐phenyl‐4H‐1,2,4‐triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4‐Me)FeII(CN)3][(Tp4‐Me)FeIII(CN)3]8 [FeIIIFeII3(trz‐ph)6]}? [Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 a ). Structural and magnetic studies reveal that MMCT can tune the two‐step SCO behavior of 1 into one‐step SCO behavior of 1 a . Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin‐transition materials with accessible multi‐electronic states.  相似文献   

8.
The syntheses, structures and magnetic properties of the coordination compounds of formula [FeIII(acac2-trien)][MnIICrIII(Cl2 An)3]·(CH3CN)2 (1), [FeIII(acac2-trien)][MnIICrIII(Br2An)3]·(CH3CN)2 (2) and [GaIII(acac2-trien)][MnIICrIII(Br2An)3]·(CH3CN)2 (3) are reported. They exhibit a 2D anionic network formed by Mn(ii) and Cr(iii) ions linked through anilate ligands, while the [FeIII(acac2-trien)]+ or [GaIII(acac2-trien)]+ charge-compensating cations are placed inside the hexagonal channels of the 2D network, instead of being inserted in the interlamellar spacing. Thus, these crystals are formed by hybrid layers assembled through van der Waals interactions. The magnetic properties indicate that these compounds behave as magnets exhibiting a long-range ferrimagnetic ordering at ca. 11 K, while the inserted Fe(iii) cations remain in the high-spin state. As for graphene, these layered materials can be exfoliated in atomically-thin layers with heights down to 2 nm by using the well-known Scotch tape method. Hence, this micromechanical procedure provides a suitable way to isolate ultrathin layers of this kind of graphene related magnetic materials. Interestingly, this method can also be successfully used to exfoliate the 2D anilate-based compound [FeIII(sal2-trien)][MnIICrIII(Cl2An)3]·solv (4), which exhibits the typical alternated cation/anion layered structure. This result shows that the micromechanical exfoliation method, which has been extensively used for exfoliating van der Waals layered solids, can also be useful for exfoliating layered coordination compounds, even when they are formed by ionic components.  相似文献   

9.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

10.
Reaction of K3[Fe(CN)6] with [Cu(tn)2](ClO4)2 (tn=1,3-diaminopropane) leads to a novel mixed cyano and tn bridged three-dimensional (3D) bimetallic assembly (1), in which each [Fe(CN)6]4− anion connects six copper(II) cations via six CN groups, whereas each copper(II) cation is linked to three [Fe(CN)6]4− ions and two other copper(II) ions through Cu–NC–Fe and Cu–tn–Cu linkages, respectively. Magnetic studies reveal weak antiferromagnetic interactions between the nearest CuII (S=1/2) ions through the diamagnetic [Fe(CN)6]4− anion.  相似文献   

11.
Two novel cyano-bridged lanthanide-transition-metal complexes, K[Fe(bipy)(CN)4 2Tb(H2O)4]·3H2O (1) and [Fe(bipy)(CN)4Sm(phen)(NO2)(H2O)2]·H2O (2) (bipy = 2.2-bipyridine; phen = 1, 10-phenanthroline), have been prepared and structurally characterized. Complex (1) possesses a cyano-bridged two-dimensional (2D) honeycomb-like structure with centrosymmetric [FeII(bipy)(CN)4 2TbIII(H2O)4] anions, potassium cations, and water of crystallization molecules. Complex (2) consists of a cyano-bridged one-dimensional (1D) ladder structure with neutral [FeII(bipy)(CN)4SmIII(phen)(NO2)(H2O)2] and water of crystallization molecules. The magnetic properties of (1) have been investigated in the 2.0–300 K range. The data for (1) reveal that magnetic interactions between Tb3+ ions through the low-spin Fe2+ ions are negligible.  相似文献   

12.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

13.
Ion-exchange reactions M2+ Fe3+ and Fe3+ M2+ (M = Mn, Co, Ni, Cu, Zn, Cd) were studied in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices M2[Fe(CN)6] in contact with aqueous FeCl3 solutions and Fe4[Fe(CN)6]3 in contact with aqueous MCl2 solutions. It was shown that in both cases, M2+ was replaced by Fe3+ and Fe3+ was replaced by M2+ to some extent, but no complete replacement was observed in the M2[Fe(CN)6]–FeCl3 or Fe4[Fe(CN)6]3–MCl2 systems under study. No electrophilic substitution Fe3+ Mn2+ was found to occur in any noticeable degree during the contact of Fe4[Fe(CN)6]3 with aqueous MnCl2 solutions even when this contact occurred for 1 h and longer.  相似文献   

14.
It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal-to-metal charge transfer (MMCT) and spin-crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII-triazole moiety and generates a mixed-valence complex {[(Tp4-Me)FeIII(CN)3]9[FeII4(trz-ph)6]}⋅[Ph3PMe]2⋅[(Tp4-Me)FeIII(CN)3] ( 1 ; trz-ph=4-phenyl-4H-1,2,4-triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4-Me)FeII(CN)3][(Tp4-Me)FeIII(CN)3]8 [FeIIIFeII3(trz-ph)6]}⋅ [Ph3PMe]2⋅[(Tp4-Me)FeIII(CN)3] ( 1 a ). Structural and magnetic studies reveal that MMCT can tune the two-step SCO behavior of 1 into one-step SCO behavior of 1 a . Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin-transition materials with accessible multi-electronic states.  相似文献   

15.
Kou  Hui-Zhong  Gao  Dong-Zhao  Bu  Wie-Ming  Fan  Yu-Guo  Liao  Dai-Zheng  Cheng  Peng  Jiang  Zong-Hui  Yan  Shi-Ping  Wang  Geng-Lin  Li  Tian-Jian  Tang  Jin-Kui 《Transition Metal Chemistry》2001,26(4-5):457-460
Two CrIII–FeIII complexes, K2[Cr(salen)(H2O)][Fe(CN)6]·H2O (1) and [trans-Cr(tn)2Cl2]3[Fe(CN)6]·6H2O (2), have been prepared. Crystal structure determination shows that complex (2) possesses an ionic salt structure. General physical measurements and magnetic studies indicate that (1) assumes a cyanide-bridged dinuclear structure, and that the CrIII–FeIII magnetic coupling through the cyanide bridge is antiferromagnetic, which can be rationalized by the overlap of magnetic orbitals of the same symmetry.  相似文献   

16.
The heterometallic complexes trans ‐[Cp(dppe)FeNCRu(o ‐bpy)CNFe(dppe)Cp][PF6]n ( 1 [PF6]n , n =2, 3, 4; o ‐bpy=1,2‐bis(2,2′‐bipyridyl‐6‐yl)ethane, dppe=1,2‐bis(diphenylphosphino)ethane, Cp=1,3‐cyclopentadiene) in three distinct states have been synthesized and fully characterized. 1 3+[PF6]3 and 1 4+[PF6]4 are the one‐ and two‐electron oxidation products of 1 2+[PF6]2, respectively. The investigated results suggest that 1 [PF6]3 is a Class II mixed valence compound. 1 [PF6]4 after a thermal treatment at 400 K shows an unusually delocalized mixed valence state of [FeIII‐NC‐RuIII‐CN‐FeII], which is induced by electron transfer from the central RuII to the terminal FeIII in 1 [PF6]4, which was confirmed by IR spectroscopy, magnetic data, and EPR and Mössbauer spectroscopy.  相似文献   

17.
Summary The kinetics and mechanism of exchange of HPDTA in [Fe2HPDTA(OH)2] with cyanide ion (HPDTA=2-hydroxytrimethylenediaminetetraacetic acid) was investigated spectrophotometrically by monitoring the peak at 395 nm ( max of [Fe(CN)5OH]3– at pH=11.0±0.02,I=0.25m (NaClO4) at ±0.1°C).Three distinct observable stages were identified; the first is the formation of [Fe(CN)5OH]3–, the second the formation of [Fe(CN)6]3– from it and the third the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by HPDTA4– released in the first stage.The first stage follows first-order kinetics in [Fe2HPDTA(OH)2] and second-order in [CN] over a wide range of [CN], but becomes zero order at [CN]<5×10–2 m. We suggest a cyanide-independent dissociation of [Fe2HPDTA)(OH)2] into [FeHPDTA(OH)] and [Fe(OH)]2+ at low cyanide concentrations and a cyanide-assisted rapid dissociation of [Fe2HPDTA(OH)2] to [FeHPDTA(OH)(CN)]3– and [Fe(OH)]2+ at higher cyanide concentrations. The excess of cyanide reacts further with [FeHPDTA(OH)(CN)]3– finally to form [Fe(CN)5OH]3–.The reverse reaction between [Fe(CN)5OH]3– and HPDTA4– is first-order in [Fe(CN)5OH]3– and HPDTA4–, and exhibits inverse first-order dependence on cyanide concentration.A six-step mechanism is proposed for the first stage of reaction, with the fifth step as rate determining.  相似文献   

18.
A chain-like compound of [Mn(salpn)][Fe(bipy)(CN)4] (1) (salpn = N,N′-propylenebis(salicylideneiminato)dianion; bipy = 2,2′-bipyridine), assembled from building blocks of [Fe(bipy)(CN)4]? and [Mn(salpn)]+, has been characterized by elemental analyses, ICP, IR, thermoanalysis, single crystal X-ray structure analysis and magnetic measurements. In 1, each [Fe(bipy)(CN)4]? anion coordinates with two [MnIII(salpn)]+ cations via two trans-CN? groups, and each [MnIII(salpn)]+ cation is axially coordinated by two [Fe(bipy)(CN)4]? ions, resulting in a straight 1-D chain. The chains stack via aromatic ππ-type interactions. Magnetic studies reveal the presence of weak antiferromagnetic interactions between adjacent FeIII and MnIII ions through cyanide-bridges.  相似文献   

19.
A simple electrochemical procedure to tailor thin polymeric films containing the [FeII(bpy)2(CH3CN)2]2+ and/or [FeII(bpy)3]2+-like cores have been described (bpy=2,2-bipyridine). The procedure is based on the electroreductive precipitation of soluble polymers prepared in situ in CH3CN by mixing Fe3+ ions and a bis bipyridyl ligand, (chiragen: chir). In the resulting [FeII(chir)(CH3CN)2]n2+ films, the two labile S ligands can be easily replaced by a bidentate ligand. This method has been applied with success to design a modified electrode with a supramolecular structure.  相似文献   

20.
Reaction of two transition metal cations M (M = VV, FeIII) on the open Wells–Dawson anion α-[{K(H2O)2}Si2W18O66]15– leads to dinuclear and tetranuclear complexes, respectively. The molecular anions [{KV2O3(H2O)2}(Si2W18O66)]11– and [{Fe4(OH)6}(Si2W18O66)]10– have been structurally characterized by single crystal X-ray diffraction. The oxo/hydroxometallic clusters [KV2O3(H2O)2]5+ and [Fe4(OH)6]6+ are included in the pocket between the two subunits of [Si2W18O66]16–. The FeIII atoms of the iron complex can be reduced to FeII by a single four-electron step. To cite this article: N. Leclerc-Laronze et al., C. R. Chimie 9 (2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号