首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heteroatoms-doped carbon nanofiber membranes with flexible features were prepared by electrospinning with heterocyclic polyimide (PI) structures containing biphenyl and pyrimidine rings. The products with optimized treatment could achieve 695 mAh/g at 0.1 A/g and retain 245 mAh/g at 1.5 A/g after 300 cycles when used as anode for Li-ion batteries.  相似文献   

2.
All-solid-state lithium metal batteries(ASSLMBs) are considered as one of the ultimate goals for the development of energy storage systems due to their high energy density and high safety. However, the mismatching of interface transport kinetics as well as interfacial instability induces the growth of lithium dendrite and thus, leads to severe degradation of battery electrochemical performances. Herein, an integrated interface configuration(IIC) consisting of in-situ generated Li I interphase an...  相似文献   

3.
Lithium metal is a very promising anode material for achieving high energy density for next generation battery systems due to its low redox potential and high theoretical specific capacity of 3860 mA h g−1. However, dendrite formation and low coulombic efficiency during cycling greatly hindered its practical applications. The formation of a stable solid electrolyte interphase (SEI) on the lithium metal anode (LMA) holds the key to resolving these problems. A lot of techniques such as electrolyte modification, electrolyte additive introduction, and artificial SEI layer coating have been developed to form a stable SEI with capability to facilitate fast Li+ transportation and to suppress Li dendrite formation and undesired side reactions. It is well accepted that the chemical and physical properties of the SEI on the LMA are closely related to the kinetics of Li+ transport across the electrolyte–electrode interface and Li deposition behavior, which in turn affect the overall performance of the cell. Unfortunately, the chemical and structural complexity of the SEI makes it the least understood component of the battery cell. Recently various advanced in situ and ex situ characterization techniques have been developed to study the SEI and the results are quite interesting. Therefore, an overview about these new findings and development of SEI engineering and characterization is quite valuable to the battery research community. In this perspective, different strategies of SEI engineering are summarized, including electrolyte modification, electrolyte additive application, and artificial SEI construction. In addition, various advanced characterization techniques for investigating the SEI formation mechanism are discussed, including in situ visualization of the lithium deposition behavior, the quantification of inactive lithium, and using X-rays, neutrons and electrons as probing beams for both imaging and spectroscopy techniques with typical examples.

Different strategies of SEI engineering such as modification, additive application, and artificial SEI for electrolyte are summarized. Characterization techniques for SEI studies using X-ray, neutron, and electron as probing beams are discussed.  相似文献   

4.
To achieve high energy density in lithium batteries, the construction of lithium-ion/metal hybrid anodes is a promising strategy. In particular, because of the anisotropy of graphite, hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li, which seriously affects the cycle life of batteries and even causes safety problems.Here, by comparing graphite with two types of hard carbon, it was found that hybr...  相似文献   

5.
With wide application of electric vehicles and large-scale in energy storage systems, the requirement of secondary batteries with higher power density and better safety gets urgent. Owing to the merits of high theoretical capacity, relatively low cost and suitable discharge voltage, much attention has been paid to the transition metal sulfides. Recently, a large amount of research papers have reported about the application of transition metal sulfides in lithium ion batteries. However, the practical application of transition metal sulfides is still impeded by their fast capacity fading and poor rate performance. More well-focused researches should be operated towards the commercialization of transition metal sulfides in lithium ion batteries. In this review, recent development of using transition metal sulfides such as copper sulfides,molybdenum sulfides, cobalt sulfides, and iron sulfides as electrode materials for lithium ion batteries is presented. In addition, the electrochemical reaction mechanisms and synthetic strategy of transition metal sulfides are briefly summarized. The critical issues, challenges, and perspectives providing a further understanding of the associated electrochemical processes are also discussed.  相似文献   

6.
Lithium metal batteries are considered as high energy density battery systems with very promising prospects and have been widely studied.However,The uncontrollable plating/stripping behavior,infinite volume change and dendrites formation of lithium metal anode restrict the application.The uncontrolled nucleation of lithium caused by the nonuniform multi-physical field distributions,can lead to the undesirable lithium deposition.Herein,a graphene composite uniformly loaded with Ag nano-particles(...  相似文献   

7.
Li metal anodes(LMAs) has attracted extensive research interest because of its extremely high theoretical capacity(3860 m Ah/g) at low redox potential(-3.04 V vs. standard hydrogen electrode). However, the extremely high chemical reactivity and the intrinsic “hostless” nature of LMAs bring about serious dendritic growth and dramatic volume change during the plating/strapping process, thus resulting in poor Coulombic efficiency, short lifespan, and severe safety concerns. Of various strategies, t...  相似文献   

8.
Interactions between the intercalant and the host have been studied in homogeneous amorphous Li(x)WO3 prepared by electron beam evaporation, using electrochemical experiments with films of different thickness (100-400 nm). We have related the intercalation thermodynamics, described previously by us [Solid State Ionics 2005, 176, 1701] with other models that take into account film volume dilatation along the intercalation. A distinct behavior of cell voltage variation with composition and volume change is observed for the thinnest (100 nm) films: cell voltage follows ideal insertion thermodynamics and no deformation was detected using profilometry techniques. In contrast, thicker films exhibited both volume changes and, correspondingly, cell voltage departs from ideality due to contributions to the chemical potential arising from elastic distortions of the host matrix.  相似文献   

9.
《中国化学快报》2022,33(8):3951-3954
The uncontrolled growth of lithium dendrites and accumulation of “dead lithium” upon cycling are among the main obstacles that hinder the widespread application of lithium metal anodes. Herein, an ionic liquid (IL) consisting of 1-methyl-1-propylpiperidinium cation (Pp13+) and bis(fluorosulfonyl)imide anion (FSI?), was chosen as the additive in propylene carbonate (PC)-based liquid electrolytes to circumvent the shortcoming of lithium metal anodes. The optimal 1% Pp13FSI acts as the role of electrostatic shielding, lithiophobic effect and participating in the formation of solid electrolyte interface (SEI) layer with enhanced properties. The in-situ optical microscopy records that the addition of IL can effectively inhibit the growth of lithium dendrites and the corrosion of lithium anode. This study delivers an effective modification to optimize electrolytes for stable lithium metal batteries.  相似文献   

10.
Deposition of nanoparticles into uniform, wide-area thin films using CO(2) as an antisolvent is presented. Ligand-stabilized silver particles are controllably precipitated from organic solvents by pressurizing and expanding the solution with carbon dioxide. Subsequent addition of carbon dioxide as a dense supercritical fluid provides for removal of the organic solvent while avoiding the surface tensions common to evaporating solvents that are detrimental to nanoscale assemblies and structures. This brand new CO(2)-expanded liquid particle deposition technique allows for the targeted deposition of particles and results in more uniform and lower defect metal nanoparticle thin films than are provided by conventional solvent evaporation techniques.  相似文献   

11.
Piezoelectric, electrete and actuator properties for series of mesophase fluorinated polyorganophosphazenes, synthesized in conditions of defectless macromolecules formation with molecular weights exceeding 106 have been studied. It was shown that majority of polymers under consideration are natural electretes, i.e., generate electrical charge at deformation before treatment in corona charge. Doping the sample with lithium triflate salt increases piezoelectric modulus d31 as before, as after polarization in electric field. In the last case the value of the modulus is comparable with piesoceramics. Stability and reproducibility of piezoelectric characteristics was also characterized. Simultaneously the actuator response in bending strain was investigated. The model devices reflecting piezoeffect (pressure sensor) and electrostriction (flexure actuator) were constructed and demonstrated.  相似文献   

12.
13.
Lithium metal anodes involve solid-electrolyte interphase (SEI) and various SEI-coupled interfaces, where Li deposition/dissolution and related processes take place. Important tasks of fundamental researches are to rationally designing and creating stable SEI and related interfaces based on in-depth understanding of the formation processes and the resultant interfacial/interphase structures. These issues fall into the category of and can be studied by taking the advantages of surface electrochemistry. In this review, we summarize recent advances in constructing SEI and lithiophilic interfaces via surface electrochemistry approaches as well as atomic force microscopic characterizations of morphology and nanomechanics for achieving long-term stability of Li anodes. Further fundamental research directions on Li metal anodes are also briefly discussed.  相似文献   

14.
A stable inorganic-organic hybrid multilayer film with homogeneous and dense inorganic nanoparticle deposition was constructed by coating ZrO2 nanoparticles with poly(4-sodium styrenesulfonate) (PSS) and irradiating multilayer film assembled from PSS-coated ZrO2 nanoparticles and a diazo-resin (DR).  相似文献   

15.
Lithium (Li) dendrite growth is a long-standing challenge leading to short cycle life and safety issues in Li metal batteries. Li dendrite growth is kinetically controlled by ion transport, the concentration gradient, and the local electric field. In this study, an internal electric field is generated between the anode and Au-modified separator to eliminate the concentration gradient of Li+. The Li–Au alloy is formed during the first cycle of Li plating/stripping, which causes Li+ deposition on the Au-modified side and lithium anode electrode, reversing the lithium dendrite growth direction. The electrically coupled Li metal electrode and Au-modified film create a uniform electric potential and Li+ concentration distribution, resulting in reduced concentration polarization and stable Li deposition. As a result, the Au-modified separator improves the lifespan of Li‖Li batteries; the Li‖LiFePO4 cells show excellent capacity retention (>97.8% after 350 cycles), and Li‖LiNi0.8Co0.1Mn0.1O2 cells deliver 75.1% capacity retention for more than 300 cycles at 1C rate. This strategy offers an efficient approach for commercial application in advanced metallic Li batteries.

An internal electric field is built between the anode and the Au-modified separator to eliminate the concentration gradient of Li+ and reverse the dendrite growth direction.  相似文献   

16.
Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and omega-carboxylate alkanethiolate monolayers, linked together in a network polymer by carboxylate-Cu2+-carboxylate bridges, exhibit electronic conductivities (sigma(EL)) that vary with both the numbers of methylene segments in the ligands and the bathing medium (N2, liquid or vapor). A chainlength-dependent swelling/contraction of the film's internal structure is shown to account for changes in sigma(EL). The linker chains appear to have sufficient flexibility to collapse and fold with varied degrees of film swelling or dryness. Conductivity is most influenced (exponentially dependent) by the chainlength of the nonlinker (alkanethiolate) ligands, a result consistent with electron tunneling through the alkanethiolate chains and nonbonded contacts between those chains on individual, adjacent MPCs. The sigma(EL) results concur with the behavior of UV-vis surface plasmon adsorption bands, which are enhanced for short nonlinker ligands and when the films are dry. The film conductivities respond to exposure to organic vapors, decreasing in electronic conductivity and increasing in mass (quartz crystal microgravimetry, QCM). In the presence of organic vapor, the flexible network of linked nanoparticles allows for a swelling-induced alteration in either length or chemical nature of electron tunneling pathways or both.  相似文献   

17.
The preparation of hybrid films of metal (Ti and Sn) phosphate nanosheets and polyaniline by simultaneous electrophoretic and electrolytic deposition was performed in an acetonitrile solvent. Emeraldine polyaniline was intercalated between the phosphate nanosheets with a monolayer arrangement. The obtained hybrid films were several tens of micrometers in thickness. The ratio of incorporated polyaniline to metal phosphate in the hybrid films reaches to around 0.45 and 0.30 at suitable concentrations of tetrabutylammonium hydroxide (TBAOH). These amounts correspond with occupancy of polyaniline in the interlayer gallery of several tens percent. Fractions of voids in a horizontal direction were around 22 and 1% in titanium phosphate/polyaniline and tin phosphate/polyaniline hybrid films, respectively. Thus, anodic electrodeposition makes it possible to form thick films of intercalation compounds of alpha-titanium and tin phosphates with polyaniline. These hybrid films were examined for redox activity. The cyclic voltammetry results of these films confirmed that the hybrid films have redox activity by polyaniline. For these voltammograms, the maximum current was observed in the tin phosphate/polyaniline hybrid deposited for 15 min. The redox activity of these hybrids possibly depends on the mesoscopic texture of the film, especially on the amount of voids in a horizontal direction.  相似文献   

18.
Catalysis, chemical separations, and energy conversion devices often depend on well-defined mesoporous materials as supports or active component elements. Herein, we show that ordered assembled organic surfactant films can directly template porous inorganic solids with surface area exceeding 1000 m(2)/g by infusing the polymers with reactive inorganic vapors, followed by anneal. The specific surface area, pore size, chemical composition, and overall shape of the product material are tuned by choice of the polymer and precursor materials as well as the influsion and postinfusion treatment conditions. X-ray diffraction, infrared spectroscopy, and electron microscopy show that vapor infusion changes both the physical and chemical structure of the starting ordered polymer films, consistent with quantified trends in specific surface area and pore size distribution measured by nitrogen adsorption after film annealing. This method yields porous TiO(2) films, for example, that function as an anode layer in a dye-sensitized solar cell.  相似文献   

19.
Journal of Solid State Electrochemistry - Enhancement on lithium ionic intercalation and conduction performance of flexible-organo-iron oxide (FeO y C z ) films, via a rapid co-synthesis with...  相似文献   

20.
Lithium metal has aroused extensive research interests as the anode for next-generation rechargeable batteries.However,the well-known dendritic Li growth and consequent safety issues still impair the long-term cycling performance.Herein,a hybrid structure composed of 3 D carbon cloth and vesicleshaped hollow ZIF-8 modification shell(HZS@CC)was prepared as a smart host for guiding uniform Li deposition.The long-range interconnected 3 D carbon fiber network enables the reduced local current density with homogeneous electrons distribution.Synergistically,abundant surface polar groups and the ultrastructure on ZIF-8 particles effectively guide a well-distributed Li-ions flow to promote the uniform Li nucleation and growth.As a result,stable Li plating/stripping for 2000 h with a low overpotential(≈15 mV)at 1 mA cm-2 were achieved in symmetric cells.Coupling with LiFePO4 cathode,the full cell delivered long life over 1200 cycles at 6 C.This research demonstrated that a homogenization guiding of Li-ions is of great importance to better make use of the structural advantage of 3 D hosts and achieve improved electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号