首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain AdS black holes are “fragile”, in the sense that, if they are deformed excessively, they become unstable to a fundamental non-perturbative stringy effect analogous to Schwinger pair-production [of branes]. Near-extremal topologically spherical AdS-Kerr black holes, which are natural candidates for string-theoretic models of the very rapidly rotating black holes that have actually been observed to exist, do represent a very drastic deformation of the AdS-Schwarzschild geometry. One therefore has strong reason to fear that these objects might be “fragile”, which in turn could mean that asymptotically flat rapidly rotating black holes might be fragile in string theory. Here we show that this does not happen: despite the severe deformation implied by near-extremal angular momenta, brane pair-production around topologically spherical AdS-Kerr-Newman black holes is always suppressed.  相似文献   

2.
The AdS/CFT correspondence may give a new way of understanding field theories in extreme conditions, as in the quark–gluon plasma phase of quark matter. The correspondence normally involves asymptotically AdS black holes with dual field theories which are defined on locally flat boundary spacetimes; the implicit assumption is that the distortions of spacetime which occur under extreme conditions do not affect the field theory in any unexpected way. However, AdS black holes are [to varying degrees] fragile, in the sense that they become unstable to stringy effects when their event horizons are sufficiently distorted. This implies that field theories on curved backgrounds may likewise be unstable in a suitable sense. We investigate this phenomenon, focussing on the “fragility” of AdS5 black holes with flat event horizons. We find that, when they are distorted, these black holes are always unstable in string theory. This may have consequences for the detailed structure of the quark matter phase diagram at extreme values of the spacetime curvature.  相似文献   

3.
We investigate the thermodynamics and stability of the horizons in warped anti-de Sitter black holes of the new massive gravity under the scattering of a massive scalar field.Under scattering,conserved quantities can be transferred from the scalar field to the black hole,thereby changing the state of the black hole.We determine that the changes in the black hole are well coincident with the laws of thermodynamics.In particular,the Hawking temperat-ure of the black hole cannot be zero in the process as per the third law of thermodynamics.Furthermore,the black hole cannot be overspun bevond the extremal condition under the scattering of any mode of the scalar field.  相似文献   

4.
We study the three-dimensional Einstein gravity conformally coupled to a scalar field. Solutions of this theory are geometries with vanishing scalar curvature. We consider solutions with a constant scalar field which corresponds to an infinite Newton?s constant. There is a class of solutions with possible curvature singularities which asymptotic symmetries are given by two copies of the Virasoro algebra. We argue that the central charge of the corresponding CFT is infinite. Furthermore, we construct a family of Schwarzschild solutions which can be conformally mapped to the Martínez–Zanelli solution of Einstein?s equations with a negative cosmological constant coupled to conformal scalar field.  相似文献   

5.
The Einstein equations with a negative cosmological constant admit black hole solutions which are asymptotic to anti-de Sitter space. Like black holes in asymptotically flat space, these solutions have thermodynamic properties including a characteristic temperature and an intrinsic entropy equal to one quarter of the area of the event horizon in Planck units. There are however some important differences from the asymptotically flat case. A black hole in anti-de Sitter space has a minimum temperature which occurs when its size is of the order of the characteristic radius of the anti-de Sitter space. For larger black holes the red-shifted temperature measured at infinity is greater. This means that such black holes have positive specific heat and can be in stable equilibrium with thermal radiation at a fixed temperature. It also implies that the canonical ensemble exists for asymptotically anti-de Sitter space, unlike the case for asymptotically flat space. One can also consider the microcanonical ensemble. One can avoid the problem that arises in asymptotically flat space of having to put the system in a box with unphysical perfectly reflecting walls because the gravitational potential of anti-de Sitter space acts as a box of finite volume.  相似文献   

6.
We study electrically charged, dilaton black holes, which possess infinitesimal angular momentum in the presence of one or two Liouville type potentials. These solutions are neither asymptotically flat nor (anti)-de Sitter. Some properties of the solutions are discussed.  相似文献   

7.
We study properties of strongly coupled CFT's with non-zero background electric charge in 1+11+1 dimensions by studying the dual gravity theory—which is a charged BTZ black hole. Correlators of operators dual to scalars, gauge fields and fermions are studied at both T=0T=0 and T≠0T0. In the T=0T=0 case we are also able to compare with analytical results based on AdS2AdS2 and find reasonable agreement. In particular the correlation between log periodicity and the presence of finite spectral density of gapless modes is seen. The real part of the conductivity (given by the current–current correlator) also vanishes as ω→0ω0 as expected. The fermion Green's function shows quasiparticle peaks with approximately linear dispersion but the detailed structure is neither Fermi liquid nor Luttinger liquid and bears some similarity to a “Fermi–Luttinger” liquid. This is expected since there is a background charge and the theory is not Lorentz or scale invariant. A boundary action that produces the observed non-Luttinger liquid like behavior (k  -independent non-analyticity at ω=0ω=0) in the Green's function is discussed.  相似文献   

8.
We study gravity interacting with a special kind of QCD-inspired nonlinear gauge field system which earlier was shown to yield confinement-type effective potential (the “Cornell potential”) between charged fermions (“quarks”) in flat space-time. We find new static spherically symmetric solutions generalizing the usual Reissner-Nordström-de Sitter and Reissner-Nordström-anti-de Sitter black holes with the following additional properties: (i) appearance of a constant radial electric field (in addition to the Coulomb one); (ii) novel mechanism of dynamical generation of cosmological constant through the non-Maxwell gauge field dynamics; (iii) appearance of confining-type effective potential in charged test particle dynamics in the above black hole backgrounds.  相似文献   

9.
10.
We study the fine structure of long‐time quantum noise in correlation functions of AdS/CFT systems. Under standard assumptions of quantum chaos for the dynamics and the observables, we estimate the size of exponentially small oscillations and trace them back to geometrical features of the bulk system. The noise level is highly suppressed by the amount of dynamical chaos and the amount of quantum impurity in the states. This implies that, despite their missing on the details of Poincaré recurrences, ‘virtual’ thermal AdS phases do control the overall noise amplitude even at high temperatures where the thermal ensemble is dominated by large AdS black holes. We also study EPR correlations and find that, in contrast to the behavior of large correlation peaks, their noise level is the same in TFD states and in more general highly entangled states.  相似文献   

11.
12.
In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole.  相似文献   

13.
We calculate exactly the quasinormal frequencies of Klein–Gordon and Dirac test fields propagating in 2D uncharged Achucarro–Ortiz black hole. For both test fields we study whether the quasinormal frequencies are well defined in the massless limit. We use their values to discuss the classical stability of the quasinormal modes in uncharged Achucarro–Ortiz black hole and to check the recently proposed Time Times Temperature bound. Furthermore we extend some of these results to the charged Achucarro–Ortiz black hole.  相似文献   

14.
As a charged fermion drops into a BTZ black hole, the laws of thermodynamics and the weak cosmic censorship conjecture are investigated in both the normal and extended phase space, where the cosmological parameter and renormalization length are regarded as extensive quantities. In the normal phase space, the first and second law of thermodynamics, and the weak cosmic censorship are found to be valid. In the extended phase space, although the first law and weak cosmic censorship conjecture remain valid, the second law is dependent on the variation of the renormalization energy d K. Moreover, in the extended phase space, the configurations of extremal and near-extremal black holes are not changed, as they are stable, while in the normal phase space, the extremal and near-extremal black holes evolve into non-extremal black holes.  相似文献   

15.
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.  相似文献   

16.
In this paper, we study slowly rotating black hole solutions in Lovelock gravity (n = 3). These solutions are obtained in uncharged and charged cases, respectively. Up to the linear order of the rotating parameter a, the entropy and gyromagnetic ratio of black holes keep invariant after introducing the Gauss-Bonnet and third order Lovelock interactions.  相似文献   

17.
A physical interpretation of theC-metric with a negative cosmological constantΛ is suggested. Using a convenient coordinate system it is demonstrated that this class of exact solutions of Einstein’s equations describes uniformly accelerating (possibly charged) black holes in anti-de Sitter universe. Main differences from the analogous de Sitter case are emphasised. Dedicated to my academic teacher Prof. J. Bičák on the occasion of his 60th birthday. This work was supported by the grant GACR-202/99/0261 of the Czech Republic and GAUK 141/2000 of Charles University in Prague.  相似文献   

18.
We compute the physical charges and discuss the properties of a large class of five-dimensional extremal AdS black holes by using the near horizon data. Our examples include baryonic and electromagnetic black branes, as well as supersymmetric spinning black holes. In the presence of the gauge Chern-Simons term, the five-dimensional physical charges are the Page charges. We carry out the near horizon analysis and compute the four-dimensional charges of the corresponding black holes by using the entropy function formalism and show that they match the Page charges.  相似文献   

19.
Super-entropic black holes possess finite-area but noncompact event horizons and violate the reverse isoperimetric inequality. It has been conjectured that such black holes always have negative specific heat at constant volume \begin{document}$ C_{V} $\end{document} or negative specific heat at constant pressure \begin{document}$ C_{P} $\end{document} whenever \begin{document}$ C_{V}>0 $\end{document}, making them unstable in extended thermodynamics. In this paper, we describe a test of this instability conjecture with a family of nonlinear electrodynamic black holes, namely 3D Einstein-Born-Infeld (EBI) AdS black holes. Our results show that when nonlinear electrodynamics effects are weak, the instability conjecture is valid. However, the conjecture can be violated in some parameter region when nonlinear electrodynamics effects are strong enough. This observation thus provides a counter example to the instability conjecture, which suggests that super-entropic black holes may be thermodynamically stable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号