首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound Fe_3(CO)_8(C_6H_5NC)(μ_3-S)_2 (Ⅰ) was synthesized by the reaction of C_6H_5NCS with Fe_3(CO)_12 at room temperature. The crystal and molecular structure of the title compound were determined by single ctystal diffraction method. Crystal data: monoclinic, space group P2_1/C, a=12.718(4)Å, b=26.164(10) Å, c=l3.741(7) Å, β=117.18(2) °, V=4067(2) Å3, Z=8, Dc=1.825 g/cm3. The structure was solved by direct method and difference Fourier synthesis, and refined by full-matrix Least-squares with anisotropic thermal paramaters, using 1990 observed reflections [Ⅰ>3σ(Ⅰ)].The final residual factor was R=0.076, Rw=0.082. The substituted ligand (C_6H_5NC)in Fe_3(CO)_8(C_6H_5NC)(μ_3-S)_2 is connected to the Fe(3) atom of the distorted tetragonal pyramid Fe_3S_2 framework.  相似文献   

2.
A series of new platinum(II) and platinum(IV) complexes of the type [PtII(HMI)2X] (where HMI=hexamethyleneimine, X=dichloro, sulfato, 1,1-cyclobutanedicarboxylato [CBDCA], oxalato, methylmalonato, or tatronato) and [PtIV(HMI)2Y2Cl2] (where Y=hydroxo, acetato, or chloro) were synthesized and characterized by infrared (IR) spectroscopy, 13C and 195Pt nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Among the complexes synthesized, [PtII(hexamethyleneimine)2(1,1-cyclobutanedicarboxylato)]·H2O was examined by single-crystal X-ray diffraction. The slightly distorted square planar coordination environment of the platinum metal includes the amino group of the hexamethyleneimine (HMI) molecule and the oxygen atoms of the carboxylato ligand. The cyclobutanedicarboxylic acid (CBDCA) molecule adopts six-member chelating rings with platinum. Hydrogen bonding plays an important part in holding the crystal lattice together.  相似文献   

3.
许多化学工作者对单齿膦配体(PPh3,PBun3,PEt2Ph,P(OEt)3,P(OC6H5)3)与母体簇合物FeCo2(CO)9(μ3-S)的取代反应进行过详细研究[1-3],但对双齿膦配体与母体簇合物的取代反应研究报导较少.Aime[4]合成了含双齿膦配体的簇合物FeCo2(CO)7(μ3-S)(Ph2PCH2PPh2),并用13CNMR和IR光谱方法对其结构进行了表征.到目前为止,含双齿膦配体的该类簇合物的晶体与分子结构还未见报导.RosannaRossetti[2]通过研究母体簇合物与…  相似文献   

4.
A novel complex containing a (μ-bicarbonato)-bis(μ-hydroxo)dicobalt(II) cation and a (μ-cyano)dichromium(III) anion has been obtained and characterized by single crystal X-ray diffraction. The cations have a confacial bioctahedral structure and the anion contains an octahedral Cr(CN)63− unit bridging to the second Cr which has trigomal planar geometry.  相似文献   

5.
Three new thiogermanates (enH)4Ge2S6 (1) and [M(en)3]2Ge2S6 (M=Mn (2), Ni (3); en=ethylenediamine) were synthesized using GeO2 and S8 as starting materials in molar ratio of 1:0.5 under solvothermal conditions. These compounds suggest that the dimeric [Ge2S6]4− anion is likely to be the main germanium-containing species in en system and it also might be preferred as counter anions by the transition metal complex cations in crystallization. The cations of [Mn(en)3]2+ and [Ni(en)3]2+ are even better mineralizers than the protonated amine of [enH]+. The crystal systems of [Ge2S6]4− compounds are related to entities of cations and intermolecular reactions between cations and [Ge2S6]4− anions. The compounds remove ethylenediamine and H2S molecules in multi steps when being heated under nitrogen stream.  相似文献   

6.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

7.
The diorganoplatinum(II) complexes PtR2{(py)3COH} (R = Me, Ph; (py)3COH = tris(pyridin-2-yl)methanol) react with water in organic solvents to form diorgano(hydroxo)platinum(IV) cations [Pt(OH)R2{(py)3COH}]+, and the cation with R = Ph reacts with dilute nitric acid to form [PtPh2{(py)3COH}(OH2)]2+. The cation in [PtPh2{(py)3COH}(OH2)][NO3]2 · H2O has octahedral geometry with a Pt---O bond distance of 2.04(1) Å. The higher trans influence of phenyl than aqua ligands is reflected in the Pt---N bond distances: 2.14(2) and 2.17(1) Å trans to the phenyl groups, and 1.99(2) Å trans to the aqua ligand.  相似文献   

8.
Treatment of CH2(PPh2)2 with n-BuLi/t-BuOK in diethyl ether affords the potassium diphosphinomethanide complex [K{CH(PPh2)2}(OEt2)0.5] (1) in high yield. Metathesis of two equivalents of 1 with LaI3(THF)4 yields the heteroleptic bis-diphosphinomethanide complex [La{CH(PPh2)2}2(I)(THF)2] (2). X-ray crystallography shows the diphosphinomethanide ligands in 2 adopt different coordination modes in the solid state; one adopts a κ2-PP mode with no La-C contact, and the other adopts an η3-PCP mode, thus giving an eight-coordinate lanthanum centre.  相似文献   

9.
The metallo-phosphaalkenes (η5-C5Me5)(CO)2FeP=C(R)(SiMe3) (Ia: R = SiMe3, Ib: R = Ph) and MeO2C---CC---CO2Me undergo a dipolar [3+2]-cycloaddition to afford the metallo-heterocycles [(η5-C5Me5)(CO)=C(R)SiMe3] (IIIa,b) with exocyclic P=C double bonds.  相似文献   

10.
The synthesis, spectroscopic, and crystal structures of three heteroleptic thioether/halide platinum(II) (Pt(II)) complexes of the general formula [Pt(9S3)X2] (9S3=1,4,7-trithiacyclononane, X=Cl, Br, I) are presented. All three 9S3/dihalo complexes form very similar structures in which the Pt(II) center is surrounded by a cis arrangement of two halides and two sulfur atoms from the 9S3 ligand. The third sulfur from the 9S3 forms a long distance interaction with the Pt center resulting in an elongated square pyramidal structure with a S2X2+S1 coordination geometry. The distances between the Pt(II) center and axial sulfur shorten with larger halide ions (Cl=3.260(3) Å>Br=3.243(2) Å>I=3.207(2) Å). These distances are consistent with the halides functioning as π donor ligands, and their Pt---S axial distances fall intermediate between Pt(II) thioether complexes involving π acceptor and σ donor ligands. The 195Pt NMR chemical shift values follow a similar trend with an increased shielding of the platinum ion with larger halide ions. The 9S3 ligand is fluxional in all of these complexes, producing a single carbon resonance. Additionally, a related series of homoleptic crown thioether complexes have been studied using 195Pt NMR, and there is a strong correlation between the chemical shift and complex structure. Homoleptic crown thioethers show the anticipated upfield chemical shifts with increasing number of coordinated sulfurs. Complexes containing four coordinated sulfur donors have chemical shifts that fall in the range of −4000 to −4800 ppm while a value near −5900 ppm is indicative of five coordinated sulfurs. However, for S4 crown thioether complexes, differences in the stereochemical orientation of lone pair electrons on the sulfur donors can greatly influence the observed 195Pt NMR chemical shifts, often by several hundred ppm.  相似文献   

11.
When the polycyclic alumosiloxane [Ph2SiO]8[AlO(OH)]4 is allowed to react with either cyclopentadienyl sodium in tetrahydrofuran or with dimethyl zinc in diethyl ether the organic ligands on the metal elements are eliminated as cyclopentadiene or methane and the metals are bonded to oxygen atoms in the alumosiloxane forming [Ph2SiO]8[AlO2(Na)]4 · 5(THF) or [Ph2SiO]8[AlO(OH)]2[AlO2]2[Zn(OH)]2 · 2(OEt2), respectively. X-ray structure determinations reveal that in the sodium derivative the original polycycle rests almost unchanged while in the zinc derivative the inner skeleton is rearranged.  相似文献   

12.
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature.  相似文献   

13.
A novel polyoxometalate {[Ni(enMe)2]2[Ni(enMe)2(H2O)]2[As2W18Ni4(enMe)2O68]}·2H3O·2H2O (1) (enMe = 1,2-propylenediamine) has been synthesized and characterized, which is the first high-dimensional structure constructed from sandwich-type transition metal substituted tungstates and transition metal coordination groups.  相似文献   

14.
A novel malonate-bridged copper (II) compound of formula {[Cu4(4,4′-bpy)8(mal)2(H2O)4](ClO4)2(H2O)4(CH3OH)2}n (4,4′-bpy = 4,4′-bipyridine; mal = malonate dianion) has been prepared and structurally characterized by X-ray crystallography. This compound exhibits a novel three-dimensional network being composed of Cu-4,4′-bipyridine layers which are pillared by malonate bridge ligands. The copper(II) ions has two different coordination environment.  相似文献   

15.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

16.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

17.
Two mononuclear RuII complexes of polypyridyl ligands, cis-[Ru(bpy)2(4,4′-bpy)Cl](PF6)·H2O (1) and cis-[Ru(phen)2(CH3CN)2](PF6)2 (2) (bpy=2,2′-bipyridyl, 4,4′-bpy=4,4′-bipyridyl, and PHEN=1,10-phenanthroline), have been synthesized and characterized by elemental analyses, IR and UV–vis spectra. The crystal structures of both complexes have been determined by X-ray diffraction, indicating that each RuII center is hexa-coordinated (RuN5Cl for 1 and RuN6 for 2) and takes a distorted octahedral geometry. The favored feature of both complexes is that they are quite useful complex precursors for further constructing new functional architectures.  相似文献   

18.
Reactions of [Pt2(μ-S)2(PPh3)4] with Ph3PbCl, Ph2PbI2, Ph2PbBr2 and Me3PbOAc result in the formation of bright yellow to orange solutions containing the cations [Pt2(μ-S)2(PPh3)4PbR3]+ (R3 = Ph3, Ph2I, Ph2Br, Me3) isolated as PF6 or BPh4 salts. In the case of the Me3Pb and Et3Pb systems, a prolonged reaction time results in formation of the alkylated species [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = Me, Et). X-ray structure determinations on [Pt2(μ-S)2(PPh3)4PbMe3]PF6 and [Pt2(μ-S)2(PPh3)4PbPh2I]PF6 have been carried out, revealing different coordination modes. In the Me3Pb complex, the (four-coordinate) lead atom binds to a single sulfur atom, while in the Ph2PbI adduct coordination of both sulfurs results in a five-coordinate lead centre. These differences are related to the electron density on the lead centre, and indicate that the interaction of the heterometal centre with the {Pt2S2} metalloligand core can be tuned by variation of the heteroatom substituents. The species [Pt2(μ-S)2(PPh3)4PbR3]+ display differing fragmentation pathways in their ESI mass spectra, following initial loss of PPh3 in all cases; for R = Ph, loss of PbPh2 occurs, yielding [Pt2(μ-S)2(PPh3)3Ph]+, while for R = Me, reductive elimination of ethane gives [Pt2(μ-S)2(PPh3)3PbMe]+, which is followed by loss of CH4.  相似文献   

19.
Zr2(MoO4)(PO4)2 is orthorhombic (Sc2W3O12 structure) from 9 to at least 400 K, and shows anisotropic volume negative thermal expansion (αa=−8.35(4)×10−6 K−1; αb=3.25(3)×10−6 K−1; αc=−8.27(5)×10−6 K−1 in the range 122-400 K) similar in magnitude to A2M3O12 (M—Mo or W) with large A3+. The contraction on heating is associated with a pattern of Zr-O-Mo/P bond angle changes that is somewhat similar, but not the same as that for Sc2W3O12. On heating, the most pronounced reductions in the separation between the crystallographic positions of neighboring Zr and P are not associated with significant reductions in the corresponding Zr-O-P crystallographic bond angles, in contrast to what was seen for Sc2W3O12.  相似文献   

20.
Thioantimonate compounds of [Mn(en)3]2Sb2S5 (1) and [Ni(en)3(Hen)]SbS4 (2) (en=ethylenediamine) were prepared by reaction of transition metal chloride with Sb and S8 powders under solvothermal conditions. Compound 1 consists of discrete [Sb2S5]4− anion, which is formed by corner-sharing SbS3 trigonal pyramids. Compound 2 is composed of discrete tetrahedral [SbS4]3− anion. The compounds 1 and 2 are charge compensated by [M(en)3]2+ cations, whereas in the crystal of 2 there is another counter ion of [Hen]+. The results of the synthesis suggest that the temperature, the concentration and the existing states of the starting materials and so on are important for the structure and composition of the final products. In addition, the oxidation-state of antimony might be related to the molar ratio of the reactants. Excess amount of elemental S is beneficial to the higher oxidation-state of thioantimonate (V). Compound 1 decomposes from 150°C to 350°C, while compound 2 decomposes from 200°C to 350°C remaining Sb2S3 and NiSbS as residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号