首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S(N)2-like reactions in hydrogen-bonded complexes have been investigated in this paper at a correlated MP2(full)/6-311++G(3df,3pd) level, employing FH...NH(3)...HF and ClH...NH(3)...HCl as model systems. The unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond can coexist in one complex which is taken as the reactant of the S(N)2-like reaction. The S(N)2-like reaction occurs along with the inversion of NH(3) and the interconversion of the unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond. In comparison with that of the isolated NH(3), the inversion barriers of the two complexes both are significantly reduced. The effect of carbon nanotube confinement on the inversion barrier is also discussed.  相似文献   

2.
Episulfidation of alkenes by dinitrogen sulfide, generated from thermolysis of 5-aryloxy-1,2,3,4-thiatriazoles, was found to be an S(N)2-like reaction involving simultaneous sulfur addition and dinitrogen extrusion. The preference for the one-step S(N)2 mechanism instead of the two-step (2+3) dipolar cycloaddition and denitrogenation is attributed to the higher geometry distortion penalty in the (2+3) transition state than that in the S(N)2-like transition state.  相似文献   

3.
Catalytic enantioselective allylic substitutions that result in addition of an allenyl group (<2% propargyl addition) and formation of tertiary or quaternary C-C bonds are described. Commercially available allenylboronic acid pinacol ester is used. Reactions are promoted by a 5.0-10 mol % loading of sulfonate-bearing chiral bidentate N-heterocyclic carbene (NHC) complexes of copper, which exhibit the unique ability to furnish chiral products arising from the S(N)2' mode of addition. Allenyl-containing products are generated in up to 95% yield, >98% S(N)2' selectivity, and 99:1 enantiomeric ratio (er). Site-selective NHC-Cu-catalyzed hydroboration of enantiomerically enriched allenes and conversion to the corresponding β-vinyl ketones demonstrates the method's utility.  相似文献   

4.
Boron Lewis acid-catalyzed and catalyst-free hydroboration reactions of imines are attractive due to the mild reaction conditions. In this work, the mechanistic details of the hydroboration reactions of two different kinds of imines with pinacolborane (HBpin) are investigated by combining density functional theory calculations and some experimental studies. For the hydroboration reaction of N-(α-methylbenzylidene)aniline catalyzed by tris[3,5-bis(trifluoromethyl)phenyl]borane (BArF3), our calculations show that the reaction proceeds through a boron Lewis acid-promoted hydride transfer mechanism rather than the classical Lewis acid activation mechanism. For the catalyst- and solvent-free hydroboration reaction of imine, N-benzylideneaniline, our calculations and experimental studies indicate that this reaction is difficult to occur under the reaction conditions reported previously. With a combination of computational and experimental studies, we have established that the commercially available BH3 ⋅ SMe2 can serve as an efficient catalyst for the hydroboration reactions of N-benzylideneaniline and similar imines. The hydroboration reactions catalyzed by BH3 ⋅ SMe2 are most likely to proceed through a hydroboration/B−H/B−N σ-bond metathesis pathway, which is very different from that of the reaction catalyzed by BArF3.  相似文献   

5.
During the past decade earth-abundant metals have become increasingly important in homogeneous catalysis. One of the reactions in which earth-abundant metals have found important applications is the hydroboration of unsaturated C−C and C−X bonds (X=O or N). Within these set of transformations, the hydroboration of challenging substrates such as nitriles, carbonates and esters still remain difficult and often relies on elaborate ligand designs and highly reactive catalysts (e. g., metal alkyls/hydrides). Here we report an effective methodology for the hydroboration of challenging C≡N and C=O bonds that is simple and applicable to a wide set of substrates. The methodology is based on using a manganese(II) triflate salt that, in combination with commercially available potassium tert-butoxide and pinacolborane, catalyzes the hydroboration of nitriles, carbonates, and esters at room temperature and with near quantitative yields in less than three hours. Additional studies demonstrated that other earth-abundant metal triflate salts can facilitate this reaction as well, which is further discussed in this report.  相似文献   

6.
The use of a cationic cyclization reaction as a probe of the glycosylation mechanism has been developed and applied to the 4,6-O-benzylidene-protected mannopyranoside system. Cyclization results in the formation of both cis- and trans-fused tricyclic systems, invoking an intermediate glycosyl oxocarbenium ion reacting through a boat conformation. Competition reactions with isopropanol and trimethyl(methallyl)silane are interpreted as indicating that β-O-mannosylation proceeds via an associative S(N)2-like mechanism, whereas α-O-mannosylation and β-C-mannosylation are dissociative and S(N)1-like. Relative rate constants for reactions going via a common intermediate can be estimated.  相似文献   

7.
A series of acyclic beta,gamma-unsaturated amides are shown to undergo highly regio- (>95%) and enantioselective (93-99% ee) rhodium-catalyzed hydroboration with pinacolborane (PinBH) using simple chiral monophosphite or phosphoramidite ligands in combination with Rh(nbd)2BF4. The most effective ligands identified are phosphoramidite 4, derived from BINOL and N-methylaniline, and phosphite 5c, prepared from the (4'-tert-butyl)phenyl TADDOL analogue and phenol. For example, (E)-3-hexenoic acid phenylamide ((E)-1) undergoes rhodium-catalyzed hydroboration with PinBH (0.5 mol % Rh(nbd)2BF4, 1.1 mol % BINOL-derived phosphoramidite 4, THF, 40 degrees C, 2 h) affording an intermediate boronate ester which after oxidation with basic hydrogen peroxide gives the beta-hydroxy amide, (S)-3-hydroxyhexanoic acid phenylamide ((S)-3), in good yield (80%) and high enantiomeric purity (99% ee). Isomeric disubstituted (E)- and (Z)-alkenes give nearly identical results, and a trisubstituted alkene substrate is also shown to undergo efficient hydroboration (97% ee). Moderate catalyst loading (0.5 mol %) and reaction temperatures in 25-40 degrees C range are generally effective. N-Phenyl amides are generally more efficient than the corresponding N-benzyl or N,N-dibenzyl analogues. Pinacolborane is found to be more efficient than catecholborane.  相似文献   

8.
The optically active tetracyclic ketone 8 was converted into the pentacylic core 14 of the C-19 methyl substituted N(a)-H sarpagine and ajmaline alkaloids via a critical haloboration reaction. The ketone 14 was then employed in the total synthesis of 19(S),20(R)-dihydroperaksine-17-al (1) and 19(S),20(R)-dihydroperaksine (2). The key regioselective hydroboration and controlled oxidation-epimerization sequence developed in this approach should provide a general method to functionalize the C(20)-C(21) double bond in the ajmaline-related indole alkaloids.  相似文献   

9.
《Tetrahedron: Asymmetry》2007,18(8):911-914
The hydroboration of heterofunctional allylic systems with catecholborane (HBcat) using neutral and cationic rhodium complexes modified with P–P and P–N bidentate chiral ligands has been described in order to produce the secondary heteroorganoboronate ester as a major product with moderate enantioselectivity. The immobilization of cationic chiral rhodium complexes onto clays has beneficial effects on the recyclability and reuse of the catalytic system in particular for the hydroboration of allyl aryl sulfones.  相似文献   

10.
The commercially available homoleptic lanthanum amide La[N(SiMe3)2]3 (LaNTMS) is reported to enable the hydroboration of esters using pinacolborane (HBpin) as the reducing agent. A wide range of substrates including aromatic, aliphatic esters and lactones were applicable to afford corresponding boronic esters in excellent yields under mild and neat conditions with broad functional group compatibility and good chemoselectivity. Furthermore, LaNTMS is capable to realize the very challenging and rarely reported hydroboration of carbonate esters with low catalyst loading at room temperature. Both cyclic and linear carbonate esters can be easily converted to the corresponding products with satisfactory yields. Besides, the hydroboration of alkynes has been developed by using LaNTMS as a catalyst.  相似文献   

11.
在B3LYP/6-31G*水平上以二甲醚(Me2O)模拟四氢呋喃(THF)对烯烃在THF溶液中硼氢化反应的机理进行了研究.计算结果发现,烯烃通过类似SN2的交换过程从醚与BH3构成的配合物获得BH3结合成π配合物中间体,这一交换是整个硼氢化反应的决速步骤.  相似文献   

12.
We report catalytic hydroboration of esters as well as nitriles under solvent-free and mild conditions using single titanium(IV) metal complex, [{κ2-C6H4C(O)N(iPr)C(N-iPr)=N}{κ3-(iPr)N=C(O)−C6H4−NC(NMe2)N(iPr)}TiNMe2] 1 as a sustainable, economical, and efficient pre-catalyst. The molecular structure of the TiIV complex in the solid state reveals the unique coordination of TiIV metal with N, N, and O atoms of one quinazolinone unit via in-situ rearrangement, while another quinazolinone moiety coordinates in bidentate fashion via both N atoms only. The TiIV complex demonstrates excellent activity as a pre-catalyst towards the hydroboration of a wide array of esters and nitriles with pinacolborane (HBpin) to afford alkoxyboranes and diboryl amines in high yield (up to 99 %) with greater tolerance to a variety of electron-withdrawing and electron-donating functional groups. A most plausible mechanism of hydroboration of esters is also proposed based on kinetics and NMR studies, which suggests the formation of titanium-hydride species as an active catalyst.  相似文献   

13.
Catecholboronate esters formed by asymmetric hydroboration of arylalkenes are not directly converted to amines by reaction with hydroxylamine-O-sulfonic acid. Prior conversion to a trialkylborane by reaction with ZnEt2 or MeMgCl permits a subsequent amination reaction to occur with essentially complete retention of configuration, leading to a range of primary alpha-arylalkylamines in up to 97% enantiomeric excess (ee). Secondary, but not tertiary amines may be formed by a related pathway when in situ generated alkylchloramines are employed as the aminating agent. The catalytic asymmetric hydroboration, beta-alkylation and amination steps may be combined in a single stage. Overall, this provides a practical procedure for the synthesis of enantiomerically enriched arylamines, exemplified inter alia by the synthesis of (S)-1,2,3,4-tetrahydro-1-naphthylamine in 95-97% ee and of (R)-N-(cyclohexyl)-1'-(4-methoxyphenyl)ethylamine in 93% ee.  相似文献   

14.
Specific deuterated reference compounds were prepared to probe the stereoselectivity of the reductive ring opening of carbohydrate-based benzylidene-type acetals. AlD(3) revealed a retentive stereoselectivity probably through the rare S(N)i (internal nucleophilic substitution) mechanism. An S(N)1-like mechanism occurs in the acid-promoted regioselective BD(3)·THF- or Et(3)SiD-reductive ring opening.  相似文献   

15.
We report a new class of frustrated Lewis pairs (FLPs) by the hydroboration of bulky isocyanates iPr2ArNCO (iPr2Ar=2,6‐iPr2C6H3) and Ph2tBuArNCO (Ph2tBuAr=2,6‐Ph2‐4‐tBuC6H2) with Piers’ borane (HB(C6F5)2). While hydroboration of smaller isocyanates such as iPr2ArNCO leads to isocyanate—N/B FLP adducts, hydroboration of the bulkier Ph2tBuArNCO allows isolation of the substrate‐free aminoborane with a short, covalent N?B bond. This confused FLP reversibly binds unsaturated substrates such as isocyanates and isocyanides, suggesting the intermediacy of a “normal” FLP along the reaction pathway, supported by high‐level DFT studies and variable‐temperature NMR spectroscopy. These results underscore the possibility of FLP behavior in systems that possess no obvious frustrated Lewis acid–base interaction.  相似文献   

16.
[reaction: see text] The BF(3)-catalyzed rearrangement of cyclobutene-fused m- and p-substituted diarylhomobenzoquinones exclusively gave the keto-alcohols via a Wagner-Meerwein vinyl-anion migration followed by the annulation of a delta-located endo-aryl group. The Hammett treatments for the endo/exo substituent effects, as well as the kinetic solvent effects, indicated that this reaction proceeds through the concerted S(N)2-like mechanism involving a rate-determining endo-aryl-assisted transition state.  相似文献   

17.
1,3‐N,O‐chelated complexes of RhI and IrI cooperatively and reversibly stabilized the B?H bond of HBCy2 to afford six‐membered metallaheterocycles (M=Rh ( 7 ) or Ir ( 8 )) having a δ‐[M]???H‐B agostic interaction. Treatment of these Shimoi‐type borane adducts 7 or 8 with both an aldehyde and an alkene resulted in chemoselective aldehyde hydroboration and reformation of the 1,3‐N,O‐chelated starting material. The observed chemoselectivity is inverted from that of free HBCy2, which is selective for alkene hydroboration.  相似文献   

18.
A series of organoboron molten salts prepared by hydroboration of allyl imidazolium type molten salts with various hydroborating reagents such as monobromoborane dimethyl sulfide complex, 9-borabicyclo[3.3.1]nonane (9-BBN) and mesitylborane, and subsequent anion exchange reaction exhibited selective cation transporting property with ionic conductivity of 7.79 x 10(-5) - 6.25 x 10(-6) S cm(-1) at 323 K.  相似文献   

19.
Arynes were generated in situ from ortho‐silyl aryl triflates and fluoride ions in the presence of stable N‐heterocyclic carbene boranes (NHC? BH3). Spontaneous hydroboration ensued to provide stable B‐aryl‐substituted NHC‐boranes (NHC? BH2Ar). The reaction shows good scope in terms of both the NHC‐borane and aryne components and provides direct access to mono‐ and disubstituted NHC‐boranes. The formation of unusual ortho regioisomers in the hydroboration of arynes with an electron‐withdrawing group supports a hydroboration process with hydride‐transfer character.  相似文献   

20.
In this work, two monomeric magnesium alkyl complexes ( 1 and 2 ) were prepared using bis(phosphino)carbazole framework and among them 1 has been used as a catalyst for hydroboration of alkenes and alkynes with pinacolborane (HBpin). A broad variety of aromatic and aliphatic alkenes and alkynes were efficiently reduced. Anti-Markovnikov regioselective hydroboration of alkenes and alkynes was achieved, which was confirmed by deuterium-labelling experiments. The work represents the first example of the use of magnesium in homogeneous catalytic hydroboration of alkene with broad substrate scope. Experimental mechanistic investigations and DFT calculations provided insights into the reaction mechanism. Finally, the hydroboration protocol was extended to terpenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号