首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic and transport properties of Tm2Co7B3 compound have been studied. This compound crystallizes in the hexagonal Ce2Co7B3 type structure. The coercivity (H c) of the compound was determined from hysteresis measurements in fields up to 4 T. The temperature dependence of coercivity has been explained by a thermally activated process of domain wall motion. The resistivity at low temperatures shows a T 2 dependence. At higher temperatures the resistivity is not a linear function of temperature, which indicates an electron-phonon interaction in the presence of a small s-d scattering.  相似文献   

2.
Nuclear magnetic spin relaxation times T 1, T 2 and T have been measured for methyl and acid protons in pivalic acid throughout the plastic crystalline phase, 6·9 to 36·5°C. T and T 2 of the methyl protons are interpreted in terms of translational self-diffusion of molecules. Diffusion coefficients are deduced which are in fair agreement with previous radiotracer measurements. T 1 measurements at 10 MHz and 20·8 MHz indicate molecular reorientation and the temperature dependence of this process is investigated. T and T 2 measurements for the acid protons show that they move more rapidly through the lattice than the molecules. This is in agreement with previously reported tracer studies. A mechanism is proposed connecting the anomalously fast hydrogen atom diffusion and molecular reorientation, which is consistent with the N.M.R. and tracer measurements.  相似文献   

3.
The behavior of the specific heat near the quantum critical point x ∼ 0.3 in the Tm1 − x Yb x B12 system has been studied. Detailed measurements have been performed on high-quality single-crystalline Tm0.74Yb0.26B12 samples within a wide temperature range of 1.9–300 K in a magnetic field up to 9 T. The temperature dependence of the magnetic contribution to the specific heat has a logarithmic divergence of the form C/T ∼ lnT at T < 4 K, which can be attributed to the quantum critical behavior regime suppressed by the external magnetic field. The Schottky anomaly of the magnetic contribution to the specific heat in Tm0.74Yb0.26B12 has been analyzed.  相似文献   

4.
Structural phase transitions in the perovskite-like material [(CH4)12(NH3)2]CoCl4 have been observed using differential thermal scanning. The material shows an order-disorder transition at T 1 = 396 ± 5 K with entropy, (ΔS 1) = 12.8 J/mole/K. A "chain melting" transition with a major endothermic peak at T 2 = 337 ± 3 K and a minor one at T ′ = 316 ± 2 K, has total entropy ΔS = 28 J/mole/K. At low temperatures, the transitions at T 3 = 288 ± 3 K and at T 4 = 188 ± 3 K, have entropies of ΔS 3 = 14.4 J/mole/K and ΔS 4 = 2.6 J/mole/K respectively. AC magnetic susceptibility in the temperature range 78-290 K, in a magnetic field of 160 A/m and at a frequency of 320 Hz is presented. The results indicate changes in symmetry at 188 K. Dielectric permittivity has been studied as a function of temperature in the range 300-430 K and frequency range (60 Hz-100 kHz), confirming the observed transitions. The dielectric permittivity reflects rotational and conformational transition for the material. The variation of the real part of the conductivity with temperature is thermally activated with different activation energies in the range of ionic hopping. The temperature dependence of the dc conductivity and that of the ions hopping rate have indicated that the concentration of mobile ions is independent of temperature. The dependence of the conductivity on frequency follows the universal power law, <artwork name="GPHT31040ei1"> in the temperature range 340 K<T<390 K. Values 0 <s 1 <1 dominate at low frequency and correspond to translational hopping motion and values 1<s 2<2 dominate at high frequencies and correspond to well localized hopping and/or reorientational motion. For T > 396 K, the AC conductivity was fitted to <artwork name="GPHT31040ei2"> with 0<s<1. Comparison with the corresponding Cu-containing material is discussed.  相似文献   

5.
The magnetic moment M, the magnetic susceptibility χ, and the thermal conductivity of chalcopyrite CuFeS2, which is a zero-gap semiconductor with antiferromagnetic ordering, have been measured in the temperature range 10–310 K. It has been revealed that the quantities χ(T) and M(T) increase anomalously strongly at temperatures below ∼100 K. The temperature dependence M(T) is affected by the magnetic prehistory of the sample. An analysis has demonstrated that the magnetic anomalies are associated with the presence of a system of noninteracting magnetic clusters in the CuFeS2 sample under investigation. The formation of the clusters is most likely caused by the disturbance of the ordered arrangement of Fe and Cu atoms in the metal sublattice of the chalcopyrite, which is also responsible for the phase inhomogeneity of the crystal lattice. The inhomogeneity brings about strong phonon scattering, and, as a result, the temperature dependence of the thermal conductivity coefficient exhibits a behavior characteristic of partially disordered crystals.  相似文献   

6.
We present measurements of the resistivity tensor components ρa (T) and ρc (T) of high-quality Tl2Ba2Ca2Cu3O10 single crystals wit Tc = 118 … 121 K. The in-plane resistivity ρa as well as the out-of-plane resistivity ρc show a metal-like temperature dependence with an anisotropy ratio ρca of up to 103. The coherence length ξc (0) = 0.15 nm could be determined from an analysis of the fluctuation conductivity above Tc. From measurements of the ac-susceptibility in magnetic fields up to 10 Tesla the temperature dependence of the depinning line could be obtained. The diffusion coefficient of the flux lines obtained from the frequency dependence of the depinning temperature shows a thermally activated behaviour of the flux motion in the field range 0.1 T ? B ? 10 T.  相似文献   

7.
Titanium-vanadium-chromium alloys are promising materials for hydrogen storage. They can absorb up to 3.8 wt % of hydrogen with a variable (depending on the composition) temperature of hydrogen release in a convenient range. This paper reports on the results of investigations of the TiV0.80Cr1.20H5.29 hydride by continuous-wave (cw) and pulsed 1H nuclear magnetic resonance spectroscopy. It has been revealed that the hydrogen atoms occupy tetrahedral positions of the face-centered cubic lattice. A model that takes into account the exchange between two states of hydrogen, i.e., mobile hydrogen and hydrogen bound to the lattice, has been proposed for interpreting the temperature dependences of the relaxation times T 1 and T 2 of 1H nuclei. The assumption that the exchange occurs in these alloys has made it possible, in particular, to explain the strong difference between the relaxation times T 1 and T 2 in the high-temperature range.  相似文献   

8.
Nuclear magnetic resonance line shapes and spin-lattice relaxation timesT 1, of1H and2H nuclei of poly[(R)-3-hydroxybutyric acid] have been measured in the temperature range 100–413 K. The results provide information on the local dynamics of the compound. Activation parameters of the revealed motion are determined.  相似文献   

9.
The proton motion in bulk and highly drawn fiber polyamide-6 has been studied by field cycling relaxometry and proton line shape measurements. The dips in theT 1 dispersion allowed for the determination of the14N quadrupole coupling tensor. The fact that only one set of14N nuclear quadrupole resonance lines, has been found shows that all N-H groups in nylon-6 are H-bonded. A striking difference in the main line width transition and the low-frequency molecular dynamics has been observed between a slowly cooled “bulk” polyamide-6 sample and a rapidly cooled and highly drawn “fiber” sample by wide line proton nuclear magnetic resonance line shape and spin-lattice relaxation time measurements. This result is consistent with the picture that shearing melt processing procedures, such as spinning, plant stable and long-lived crystallization nuclei into the amorphous phase which impose additional motional constraints on the surroundings and inhibit the self-diffusion process.  相似文献   

10.
An X‐ray magnetic circular dichroism (XMCD) study performed at the Ho L2,3‐edges in Ho6Fe23 as a function of temperature is presented. It is demonstrated that the anomalous temperature dependence of the Ho L2‐edge XMCD signal is due to the magnetic contribution of Fe atoms. By contrast, the Ho L3‐edge XMCD directly reflects the temperature dependence of the Ho magnetic moment. By combining the XMCD at both Ho L2‐ and L3‐edges, the possibility of determining the temperature dependence of the Fe magnetic moment is demonstrated. Then, both μHo(T) and μFe(T) have been determined by tuning only the absorption L‐edges of Ho. This result opens new possibilities of applying XMCD at these absorption edges to obtain quantitative element‐specific magnetic information that is not directly obtained by other experimental tools.  相似文献   

11.
T 1 spin relaxation of muonium in KCl has been studied at low temperatures (20 mK to 2 K), where the motion is believed to be band-like, i.e. the mean free path is longer than the lattice constant. The Celio model, based on the assumption of stochastic hopping of muonium, accurately describes the field dependence ofT 1 at higher temperatures but fails below 4 K. The measuredT 1 spin relaxation rates vary weakly with temperature below 2 K even thoughk BT at the lowest temperature is well below the estimated muonium bandwidth obtained from the data at higher temperatures. This is taken as evidence that muonium is not completely thermalized on the time-scale of the muon lifetime due to the weak interaction with phonons at low temperatures.  相似文献   

12.
The diffusion of Al in a Cu: 3.8 at % Al alloy has been investigated by observing the rotating-frame nuclear magnetic relaxation time T of 27Al as a function of temperature. It is shown that relaxation measurements of the solute atoms in a dilute alloy provide the correlation time of the diffusive motion of these atoms, if quadrupolar interactions form the main contribution to the relaxation time. From the correlation times the Al-diffusion coefficient in the alloy has been determined.  相似文献   

13.
Nuclear magnetic resonance measurements of the proton spin-lattice relaxation rate R1 for Ti2Ni-type compounds Ti2CoHx (x=0.56, 0.77 and 1.34) have been performed over the temperature range 20-510 K and the resonance frequency range 13-90 MHz. For Ti2CoH0.77 and Ti2CoH1.34 the temperature dependence of R1 is found to exhibit an additional low-temperature peak near 280 K; the amplitude of this peak increases with increasing H content. These results give evidence for the coexistence of at least two types of hydrogen jump motion with different characteristic frequencies. For Ti2CoH0.56 no additional R1 peak has been found. The concentration dependence of the additional peak is discussed in terms of the occupancy of inequivalent interstitial sites by hydrogen atoms.  相似文献   

14.
The temperature dependence of the electrical resistivity, the thermal conductivity and the thermopower of the cubic isostructural (GdxY1–x)Al2 series will be presented. The magnetic properties of this system are characterized by the existence of ferromagnetism for Gd concentrations x>0.3 while for low Gd contents cluster and spinglass behaviour is observed. The spin dependent scattering contribution to the transport phenomena has been obtained by comparing the experimental data of the magnetic compounds with those of the isostructural nonmagnetic YAl2. For the ferromagnetic concentration range and forT>T c (T c =Curie temperature) we revealed a temperature independent contribution to the electrical resistivity, a contribution with a temperature variation of 1/T to the thermal resistivity and a linear temperature dependence of this part to the thermopower. These results are in good agreement with the temperature dependence calculated by solving the linearized Boltzmann equation for this type of scattering processes.  相似文献   

15.
Some recent result of muon spin relaxation measurements in rare earth metals and intermetallic compounds are reviewed. Special emphasis is put on measurements that relate to the properties of correlated regions of spins existing relatively far above the ordering temperature in the rare earth ions. As far as comparable data from paramagnetic neutron scattering exist, they will be discussed in the same framework. For each temperature the correlated regions (or short-lived magnetic clusters) are characterized by their size, possible anisotropy with respect to the crystalline axes and their lifetime. The actual form of the interaction between the rare earth spins themselves and with the crystal fields determine the temperature dependence of these properties; a strong dipole interaction can, for instance, be expected to change the critical behaviour nearT c . Much of the time will be devoted to experiments on Gd-metal where there are experimental indications that several interesting phenomena occur: (1) a strong effect of a cross-over from a non-conserved dynamics (dipolar) regime to a conserved (exchange dominated) regime some 10 K aboveT c , (2) an anisotropy of the magnetic clusters with respect to the hexagonalc-axis, and (3), a persistence of spin correlations far aboveT c . Some attempts to correlate the rare earth spin relaxation times measured in this region with cluster lifetimes deduced from neutron scattering will be reviewed, as well as a model for understanding these lifetimes in terms of temperature dependent cluster wall motion, which is determined by exchange and magnetic anisotropy parameters. Effects of possible quantum correlations originating from the “spin system+bath” interaction will be mentioned.  相似文献   

16.
The temperature dependence of the EPR spectrum for the α-phase of iron tungstate has been investigated in the temperature range of 40–260 K. At temperatures betweenT 1 ≈ 250 K andT 2 ≈ 205 K where the antiferromagnetic phase transition occurs, a relatively narrow EPR line arising from the dominant iron(III) species has emerged, gaining intensity with the temperature increase. Its linewidth temperature evolution could be described by Huber equation, with TN = 200 K, which is consistent with the peak seen in magnetic susceptibility measurements, while the correspondingg-factor shifts to higher fields reflecting the build-up of internal field emerging from increasing shortrange order in the spin system. At temperatures lower than T2, a very broad and distorted EPR line with temperature dependentg-factor and linewidth has been observed reflecting the corresponding rise of the magnetic susceptibility below the antiferromagnetic phase transition, presumably arising from magnetic clusters embedded in the antiferromagnetic background.  相似文献   

17.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

18.
Selective T 1 measurements at different temperatures on seven substituted benzenes in CDCl3 solution show that for these molecules the rotational diffusion model applies. Anisotropic reorientation is important if the molecules contain two polar substituents para to each other. Anomalies in the temperature dependence of the T 1 values in a 2-methyl substituted phenol are explained by intermolecular hydrogen bonds, which strongly influence the molecular motion. In a 2,6-dimethyl substituted phenol this effect is absent. The correlation times and the energy barriers for methyl rotation of methyl and methoxy groups are determined. The reorientation of methoxy groups around the aryl oxygen bond is slower than the molecular motion. The T 1 values of ring protons and substituents can in some cases be used for spectral assignment. Expressions are given for the T 1 value of a ring proton relaxed by an ortho methyl or methoxy group and for the T 1 value of a reorienting methoxy group in the case of dipolar relaxation and axially symmetric behaviour of the molecule.  相似文献   

19.
We present the results of inelastic neutron scattering experiments on the intermediate-valent system YbPd2Si2 to investigate the magnetic relaxation behaviour. We have performed measurements on polycrystalline samples with neutrons of incident energyE 0=3.1 meV at temperatures between 1.5 K and 250 K, and withE 0=12.7 meV andE 0=50.8 meV at temperatures between 5 K and 50 K using time-of-flight spectrometers. At temperaturesT>50 K we find a pure quasielastic magnetic response with a rather broad linewidth typical for intermediate-valent systems. AtT50 K an inelastic excitation line appears at about 21 meV; its intensity increases with decreasing temperature. In the same temperature range (T<50 K) the quasielastic linewidth decreases rapidly and atT=5 K the quasielastic response has been apparently transformed to a second inelastic feature at about 4.7 meV. The width of this low-energy excitation fits well to the temperature dependence of the quasielastic linewidth forT>5 K.  相似文献   

20.
Lineshapes and peak positions of 1s→2p?1, donor transitions in epitaxial GaAs samples of relatively low compensation have been studied as functions of magnetic field by use of photoconductivity measurements. Some of these samples were produced by transmutation doping using thermal neutrons—a method which is useful for the controlled introduction of donor impurities in GaAs. Two new effects, tentatively attributed to van der Waals interactions between neutral donor atoms, are observed: (1) although both Se and Ge donors are introduced by thermal neutron transmutation, the Se line is much broader than the Ge line, and (2) deviations from isolated-donor behavior occur in the magnetic field dependence of the chemical shift of the shallowest donor present. The separation of lines from two deeper donors, Ge and Si, verified the simple phenomenological theory of the magnetic field dependence of central cell corrections of isolated donors up to at least 10T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号