首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the connections between four-dimensional, N = 2 M-theory vacua constructed as orbifolds of type II, heterotic, and type I strings. All these models have the same massless spectrum, which contains an equal number of vector multiplets and hypermultiplets, with a gauge group of the maximal rank allowed in a perturbative heterotic string construction. We find evidence for duality between two type I compactifications recently proposed and a new heterotic construction that we present here. This duality allows us to gain insight into the non-perturbative properties of these models. In particular we consider gravitational corrections to the effective action.  相似文献   

2.
In this paper, we give the most general duality gates, or generalized quantum gates in duality quantum computers. Here we show by explicit construction that a n-bit duality quantum computer with d slits can be simulated perfectly with an ordinary quantum computer with n qubits and one auxiliary qudit. Using this model, we give the most general form of duality gates which is of the form ∑i=0^d-1piUi,and the pi 's are complex numbers with module less or equal to 1 and constrained by|∑iPi|≤1.  相似文献   

3.
In the past decade, the importance of dissipation and fluctuation to inflationary dynamics has been realized and has led to a new picture of inflation called warm inflation. Although these phenomena are common to condensed matter systems, for inflation models their importance has only recently started to be appreciated. The article describes the motivation for these phenomena during inflation and then examines their origins from first principles quantum field theory treatments of inflation models. Cosmology today is a data intensive field and this is driving theory to greater precision and predictability. This opens the possibility to consider tests for detecting observational signatures of dissipative processes, which will be discussed. In addition, it will be discussed how particle physics and cosmology are now working in tandem to push the boundaries of our knowledge about fundamental physics.  相似文献   

4.
5.
The AFLT states |P〉Y1,Y2 has reflection symmetry, S^n|P〉Y1,Y2 = |- P〉Y2,Y2, nb =-2P, where S is the screening charge. AFLT state can be constructed using this reflect symmetry. We propose a recursion formula for this construction. The recursion formula is factorized completely.  相似文献   

6.
In this paper we study a criterion of self-duality for multi-state probabilistic cellular automata with finite range interactions and give some models which satisfy this criterion.  相似文献   

7.
王强华 《物理》2004,33(8):547-550
作者最近的一项理论工作对高温超导体作为一种掺杂Mott绝缘体进行了新的探索 ,得到一个长波低能极限的有效理论 ,强调了自旋反铁磁性和超导电性之间的拓扑互偶关系 .这个理论能够为一大类具有本质性和挑战性的高温超导现象提供简明的解释 ,给出掺杂Mott绝缘体的超导电性的“指纹”特征 ,并给出若干有趣的理论预言 .  相似文献   

8.
We construct new examples of models of metastable D=4D=4N=1N=1 supersymmetry breaking in which all scales are generated dynamically. Our models rely on Seiberg duality and on the ISS mechanism of supersymmetry breaking in massive SQCD. Some of the electric quark superfields arise as composites of a strongly coupled gauge sector. This allows us to start with a simple cubic superpotential and an asymptotically free gauge group in the ultraviolet, and end up with an infrared effective theory which breaks supersymmetry dynamically in a metastable state.  相似文献   

9.
龙桂鲁  刘洋 《物理学进展》2011,28(4):410-431
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用。广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系。利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题。从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉。广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算。基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机。在原理上对偶计算机超越了经典的计算机和现有的量子计算机。在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果。除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性。形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性。目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础。本文着重从物理的角度去综述广义量子干涉原理和对偶计算机。现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力。这样,我们可以使用一台具有n+log2d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍。我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式。利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来。对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会。在对偶计算机中,除了幺正操作外,还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作。目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质。此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法。由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用。  相似文献   

10.
In this letter, we propose a duality computing mode, which resembles particle-wave duality property when a quantum system such as a quantum computer passes through a double-slit. In this mode, computing operations are not necessarily unitary. The duality mode provides a natural link between classical computing and quantum computing. In addition, the duality mode provides a new tool for quantum algorithm design.  相似文献   

11.
We study a particular combination of charge and heat currents, which is decoupled with the heat current. The "heat-decoupled" (HD) current can be transported by diffusion at long distances, when the thermoelectric effect is small, large, or balanced. Using holographic models with momentum relaxation, we illustrate that the different thermoelectric effects correspond to the high temperatures and strong disorder, low temperatures, or special critical index. Meanwhile, the Einstein-like relation and the diffusion/chaos relation may be emergent. Assuming that the existence and features of HD modes appear in strange metals, we can predict that when the thermoelectric effect is not very large, the scaling of resistivity is predominantly controlled by the HD susceptibility and chaos; otherwise more physics is required.  相似文献   

12.
We show that a class of spin models, containing the Ashkin-Teller model, admits a generalized random-cluster (GRC) representation. Moreover, we show that basic properties of the usual representation, such as FKG inequalities and comparison inequalities, still hold for this generalized random-cluster model. Some elementary consequences are given. We also consider the duality transformations in the spin representation and in the GRC model and show that they commute.  相似文献   

13.
In this letter, we propose a duality computing mode, which resembles particle-wave duality property when a quantum system such as a quantum computer passes through a double-slit. In this mode, computing operations are not necessarily unitary. The duality mode provides a natural link between classical computing and quantum computing. In addition, the duality mode provides a new tool for quantum algorithm design.  相似文献   

14.
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用.广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系.利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题.从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉.广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算.基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机.在原理上对偶计算机超越了经典的计算机和现有的量子计算机.在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果.除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性.形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性.目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础.本文着重从物理的角度去综述广义量子干涉原理和对偶计算机.现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力.这样,我们可以使用一台具有n+log<,2>d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍.我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式.利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来.对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会.在对偶计算机中,除了幺正操作外.还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作.目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质.此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法.由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用.  相似文献   

15.
Using exact solutions, we show that it is in principle possible to regard waves and particles as representations of the same underlying geometry, thereby resolving the problem of wave-particle duality.  相似文献   

16.
There have been recent advances in the construction of algebraic curves for certain classes of string solutions in the context of the AdS/CFT correspondence. In this paper we obtain the Lax operators and associated spectral curves for circular and folded string solutions in AdS 5 × S 5 . In addition, we provide an original approach for the reconstruction of string solutions in S3 from their corresponding curves.  相似文献   

17.
The cosmic distance duality relation (DDR) is constrained by a combination of type-Ia supernovae (SNe Ia) and strong gravitational lensing (SGL) systems using the deep learning method. To make use of the full SGL data, we reconstruct the luminosity distance from SNe Ia up to the highest redshift of SGL using deep learning, and then, this luminosity distance is compared with the angular diameter distance obtained from SGL. Considering the influence of the lens mass profile, we constrain the possible violation of the DDR in three lens mass models. The results show that, in the singular isothermal sphere and extended power-law models, the DDR is violated at a high confidence level, with the violation parameter \begin{document}$ \eta_0=-0.193^{+0.021}_{-0.019} $\end{document} and \begin{document}$ \eta_0=-0.247^{+0.014}_{-0.013} $\end{document}, respectively. In the power-law model, however, the DDR is verified within a 1σ confidence level, with the violation parameter \begin{document}$ \eta_0=-0.014^{+0.053}_{-0.045} $\end{document}. Our results demonstrate that the constraints on the DDR strongly depend on the lens mass models. Given a specific lens mass model, the DDR can be constrained at a precision of \begin{document}$O(10^{-2}) $\end{document} using deep learning.  相似文献   

18.
The critical behavior of the weak-field Hall effect near a percolation threshold is studied with the help of two discrete random network models. Many finite realizations of such networks at the percolation threshold are produced and solved to yield the potentials at all sites. A new algorithm for doing that was developed that is based on the transfer matrix method. The site potentials are used to calculate the bulk effective Hall conductivity and Hall coefficient, as well as some other properties, such as the Ohmic conductivity, the size of the backbone, and the number of binodes. Scaling behavior for these quantities as power laws of the network size is determined and values of the critical exponents are found.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel  相似文献   

19.
The conceptual problems that quantum mechanics poses has been noticed by numerous authors [1]. From the early beginnings it has been questioned even by some of its creators: Planck, Eherenfest, Einstein, Schrödinger and de Broglie [2-9]. The problem of the collapse of the wave function, its compatibility with special relativity, the question of its completeness, the meaning of the uncertainty relations, etc., are some of the points that have still not received a satisfactory answer. Certainly a large part of these problems would not exist if the theory could get a realistic and local formulation.On the other hand, quantum mechanics has proven to be extremely good from a pragmatic point of view. It seems to make sense to create a theory that at the same time is realistic and local and close to quantum mechanics, without coinciding exactly with it, because Bell's theorem [10] forbids explicitly this possibility.The hope of a realistic and local explanation of the world has not been excluded experimentally. However, since the most extended opinion in the scientific community is just the opposite, we shall explain once more where lies the error of their arguments. Section 1 deals with the weak and strong Bell's inequalities, quoting the different approaches to solve the EPR paradox. In Sec. 2 one of these approaches is developed, the one usually called Enhancement or Variable-Detection-Probability Model. In Sec. 3, and with the same approach, we display one of these models that is basically an enrichment of the Einstein-de Broglie's version of quantum mechanics.  相似文献   

20.
It has been conjectured, on the basis of the gauge-gravity duality, that the ratio of the shear viscosity to the entropy density should be universally bounded from below by 1/4π1/4π in units of the Planck constant divided by the Boltzmann constant. Here, we prove the bound for any ghost-free extension of Einstein gravity and the field-theory dual thereof. Our proof is based on the fact that, for such an extension, any gravitational coupling can only increase from its Einstein value. Therefore, since the shear viscosity is a particular gravitational coupling, it is minimal for Einstein gravity. Meanwhile, we show that the entropy density can always be calibrated to its Einstein value. Our general principles are demonstrated for a pair of specific models, one with ghosts and one without.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号