首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The five singly and doubly hydrogen bonded dimers of formamide are calculated at the correlated level by using resolution of identity M?ller-Plesset second-order perturbation theory (RIMP2) and the coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] method. All structures are optimized with the Dunning aug-cc-pVTZ and aug-cc-pVQZ basis sets. The binding energies are extrapolated to the complete basis set (CBS) limit by using the aug-cc-pVXZ (X = D, T, Q) basis set series. The effect of extending the basis set to aug-cc-pV5Z on the geometries and binding energies is studied for the centrosymmetric doubly N-H...O bonded dimer FA1 and the doubly C-H...O bonded dimer FA5. The MP2 CBS limits range from -5.19 kcal/mol for FA5 to -14.80 kcal/mol for the FA1 dimer. The DeltaCCSD(T) corrections to the MP2 CBS limit binding energies calculated with the 6-31+G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are mutually consistent to within < or =0.03 kcal/mol. The DeltaCCSD(T) correction increases the binding energy of the C-H...O bonded FA5 dimer by 0.4 kcal/mol or approximately 9% over the distance range +/-0.5 Angstrom relative to the potential minimum. This implies that the ubiquitous long-range C-H...O interactions in proteins are stronger than hitherto calculated.  相似文献   

2.
3.
Computation of accurate intramolecular hydrogen-bonding energies for peptides is of great importance in understanding the conformational stabilities of peptides and developing a more accurate force field for proteins. We have proposed a method to determine the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies in glycine and alanine peptides. In this article, the method is further applied to evaluate the intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies in peptides. The optimal structures of the intramolecular 10-membered ring N-H...O=C hydrogen bonds in glycine and alanine tripetide molecules are obtained at the MP2 level with 6-31G(d), 6-31G(d,p), and 6-31+G(d,p) basis sets. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are then evaluated based on our method at the MP2/6-311++G(3df,2p) level with basis set superposition error correction. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are calculated to be in the range of -6.84 to -7.66, -4.44 to -4.98, and -6.95 to -7.88 kcal/mol. The method is also applied to estimate the individual intermolecular hydrogen-bonding energies in the dimers of amino-acetaldehyde, 2-amino-acetamide, formamide, and oxalamide, each dimer having two identical intermolecular hydrogen bonds. According to our method, the individual intermolecular hydrogen-bonding energies in the four dimers are calculated to be -1.77, -1.67, -6.35, and -4.82 kcal/mol at the MP2/6-311++G(d,p) level, which are in good agreement with the values of -1.84, -1.72, -6.23, and -4.93 kcal/mol predicted by the supermolecular method.  相似文献   

4.
Fluorobenzenes are pi-acceptor synthons that form pi-stacked structures in molecular crystals as well as in artificial DNAs. We investigate the competition between hydrogen bonding and pi-stacking in dimers consisting of the nucleobase mimic 2-pyridone (2PY) and all fluorobenzenes from 1-fluorobenzene to hexafluorobenzene (n-FB, with n = 1-6). We contrast the results of high level ab initio calculations with those obtained using ultraviolet (UV) and infrared (IR) laser spectroscopy of isolated and supersonically cooled dimers. The 2PY.n-FB complexes with n = 1-5 prefer double hydrogen bonding over pi-stacking, as diagnosed from the UV absorption and IR laser depletion spectra, which both show features characteristic of doubly H-bonded complexes. The 2-pyridone.hexafluorobenzene dimer is the only pi-stacked dimer, exhibiting a homogeneously broadened UV spectrum and no IR bands characteristic for H-bonded species. MP2 (second-order M?ller-Plesset perturbation theory) calculations overestimate the pi-stacked dimer binding energies by about 10 kJ/mol and disagree with the experimental observations. In contrast, the MP2 treatment of the H-bonded dimers appears to be quite accurate. Grimme's spin-component-scaled MP2 approach (SCS-MP2) is an improvement over MP2 for the pi-stacked dimers, reducing the binding energy by approximately 10 kJ/mol. When applied to explicitly correlated MP2 theory (SCS-MP2-R12 approach), agreement with the corresponding coupled-cluster binding energies [at the CCSD(T) level] is very good for the pi-stacked dimers, within +/- 1 kJ/mol for the 2PY complexes with 1-fluorobenzene, 1,2-difluorobenzene, 1,2,4,5-tetrafluorobenzene, pentafluorobenzene and hexafluorobenzene. Unfortunately, the SCS-MP2 approach also reduces the binding energy of the H-bonded species, leading to disagreement with both coupled-cluster theory and experiment. The SCS-MP2-R12 binding energies follow the SCS-MP2 binding energies closely, being about 0.5 and 0.7 kJ/mol larger for the H-bonded and pi-stacked forms, respectively, in an augmented correlation-consistent polarized valence quadruple-zeta basis. It seems that the SCS-MP2 and SCS-MP2-R12 methods cannot provide sufficient accuracy to replace the CCSD(T) method for intermolecular interactions where H-bonding and pi-stacking are competitive.  相似文献   

5.
The binding energies of thirty-six hydrogen-bonded peptide-base complexes, including the peptide backbone-ase complexes and amino acid side chain-base complexes, are evaluated using the analytic potential energy function established in our lab recently and compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparison indicates that the analytic potential energy function yields the binding energies for these complexes as reasonable as MP2 does, much better than the force fields do. The individual N H…O=C, N H…N, C H…O=C, and C H…N attractive interaction energies and C=O…O=C, N H…H N, C H…H N, and C H…H C repulsive interaction energies, which cannot be easily obtained from ab initio calculations, are calculated using the dipole-dipole interaction term of the analytic potential energy function. The individual N H…O=C, C H…O=C, C H…N attractive interactions are about 5.3±1.8, 1.2±0.4, and 0.8 kcal/mol, respectively, the individual N H … N could be as strong as about 8.1 kcal/mol or as weak as 1.0 kcal/mol, while the individual C=O…O=C, N H…H N, C H…H N, and C H…H C repulsive interactions are about 1.8±1.1, 1.7±0.6, 0.6±0.3, and 0.35±0.15 kcal/mol. These data are helpful for the rational design of new strategies for molecular recognition or supramolecular assemblies.  相似文献   

6.
Systematic investigation of in-plane hydrogen-bonded complexes of ammonia with partially substituted fluorobenzenes has revealed that fluorobenzene, difluorobenzene, and trifluorobenzene favor formation of cyclic complexes with a C-H...N-H...F-C binding motif. On the other hand, tetrafluorobenzene and pentafluorobenzene favor formation of linear C-H...N hydrogen-bonded complexes. The complete absence of exclusively linear N-H...F hydrogen-bonded complexes for the entire series indicates that C-F bond in fluorobenzenes is a reluctant hydrogen-bond acceptor. However, fluorine does hydrogen bond when cooperatively stabilized with C-H...N hydrogen bonds for the lower fluoro analogues. The propensity of fluorobenzenes to adapt to the C-H...N-H...F-C binding motif decreases with the progressive fluorination of the benzene ring and disappears completely when benzene ring is substituted with five or more fluorine atoms.  相似文献   

7.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

8.
A charge density study of crystalline 1-(4-fluorophenyl)-3,6,6-trimethyl-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one (A) and 1-(4-fluorophenyl)-6-methoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline (B) has been carried out using high-resolution X-ray diffraction data collected at 113(2) K. Weak intermolecular interactions of the type C-H...O, C-H...pi, and pi...pi hold the molecules together in the crystal lattice along with interactions of the type C-H...F and unusual C-F...F-C examined via charge density analysis. The topological features are evaluated in terms of Bader's theory of atoms in molecules through the first four criteria of Koch and Popelier. The C-F...F-C contact is observed to be across the center of symmetry in B and not in A, and further, this interaction appears to possess a certain correlation with the electron density properties at the critical point which suggests that such an interaction fits into the hierarchy of weak interactions.  相似文献   

9.
The nucleobases uracil (U) and thymine (T) offer three hydrogen-bonding sites for double H-bond formation via neighboring N-H and C=O groups, giving rise to the Watson-Crick, wobble and sugar-edge hydrogen bond isomers. We probe the hydrogen bond properties of all three sites by forming hydrogen bonded dimers of U, 1-methyluracil (1MU), 3-methyluracil (3MU), and T with 2-pyridone (2PY). The mass- and isomer-specific S1 <-- S0 vibronic spectra of 2PY.U, 2PY.3MU, 2PY.1MU, and 2PY.T were measured using UV laser resonant two-photon ionization (R2PI). The spectra of the Watson-Crick and wobble isomers of 2PY.1MU were separated using UV-UV spectral hole-burning. We identify the different isomers by combining three different diagnostic tools: (1) Selective methylation of the uracil N3-H group, which allows formation of the sugar-edge isomer only, and methylation of the N1-H group, which leads to formation of the Watson-Crick and wobble isomers. (2) The experimental S1 <-- S0 origins exhibit large spectral blue shifts relative to the 2PY monomer. Ab initio CIS calculations of the spectral shifts of the different hydrogen-bonded dimers show a linear correlation with experiment. This correlation allows us to identify the R2PI spectra of the weakly populated Watson-Crick and wobble isomers of both 2PY.U and 2PY.T. (3) PW91 density functional calculation of the ground-state binding and dissociation energies De and D0 are in agreement with the assignment of the dominant hydrogen bond isomers of 2PY.U, 2PY.3MU and 2PY.T as the sugar-edge form. For 2PY.U, 2PY.T and 2PY.1MU the measured wobble:Watson-Crick:sugar-edge isomer ratios are in good agreement with the calculated ratios, based on the ab initio dissociation energies and gas-phase statistical mechanics. The Watson-Crick and wobble isomers are thereby determined to be several kcal/mol less strongly bound than the sugar-edge isomers. The 36 observed intermolecular frequencies of the nine different H-bonded isomers give detailed insight into the intermolecular force field.  相似文献   

10.
The 2-aminopyridine2-pyridone (2AP2PY) dimer is linked by N-H...O=C and N-H...N hydrogen bonds, providing a model for the Watson-Crick hydrogen bond configuration of the adenine.thymine and adenine.uracil nucleobase pairs. Mass-specific infrared spectra of 2AP2PY and its seven N-H deuterated isotopomers have been measured between 2550 and 3650 cm(-1) by IR laser depletion combined with UV two-color resonant two-photon ionization. The 2PY amide N-H stretch is a very intense band spread over the range 2700-3000 cm(-1) due to large anharmonic couplings. It is shifted to lower frequency by 710 cm(-1) or approximately 20% upon H bonding to 2AP. On the 2AP moiety, the "bound" amino N-H stretch gives rise to a sharp band at 3140 cm(-1), which is downshifted by 354 cm(-1) or approximately 10% upon H bonding to 2PY. The amino group "free" N-H stretch and the H-N-H bend overtone are sharp bands at approximately 3530 cm(-1) and 3320 cm(-1). Ab initio structures and harmonic vibrations were calculated at the Hartree-Fock level and with the PW91 and B3LYP density functionals. The PW91/6-311++G(d,p) method provides excellent predictions for the frequencies and IR intensities of all the isotopomers.  相似文献   

11.
Bis(trifluoromethylsulfonylamino)methane in an inert medium exists as an equilibrium mixture of monomeric forms with various types of intramolecular hydrogen bonds, whose population depends on the polarity of the medium. The energetically most favorable form is a symmetrical form containing two N-H...O=S bonds. Less stable are the isomer with two N-H...F-C bonds and the unsymmetrical isomer with two different hydrogen bonds. N-[(Trifluoromethylsulfonyl)aminomethyl]acetamide contains one intramolecular intramolecular N-H...O=C hydrogen bond and preserves ability for self-association.  相似文献   

12.
The C-H sigma-bond activation of methane and the N-H sigma-bond activation of ammonia by (Me3SiO)2Ti(=NSiMe3) 1 were theoretically investigated with DFT, MP2 to MP4(SDQ), and CCSD(T) methods. The C-H sigma-bond activation of methane takes place with an activation barrier (Ea) of 14.6 (21.5) kcal/mol and a reaction energy (DeltaE) of -22.7 (-16.5) kcal/mol to afford (Me3SiO)2Ti(Me)[NH(SiMe3)], where DFT- and MP4(SDQ)-calculated values are given without and in parentheses, respectively, hereafter. The electron population of the CH3 group increases, but the H atomic population decreases upon going to the transition state from the precursor complex, which indicates that the C-H sigma-bond activation occurs in heterolytic manner unlike the oxidative addition. The Ti atomic population considerably increases upon going to the transition state from the precursor complex, which indicates that the charge transfer (CT) occurs from methane to Ti. These population changes are induced by the orbital interactions among the d(pi)-p(pi) bonding orbital of the Ti=NSiMe3 moiety, the Ti d(z2) orbital and the C-H sigma-bonding and sigma*-antibonding orbitals of methane. The reverse regioselective C-H sigma-bond activation which leads to formation of (Me3SiO)2Ti(H)[NMe(SiMe3)] takes place with a larger Ea value and smaller exothermicity. The reasons are discussed in terms of Ti-H, Ti-CH3, Ti-NH3, N-H, and N-CH3 bond energies and orbital interactions in the transition state. The N-H sigma-bond activation of ammonia takes place in a heterolytic manner with a larger Ea value of 19.0 (27.9) kcal/mol and considerably larger exothermicity of -45.0 (-39.4) kcal/mol than those of the C-H sigma-bond activation. The N-H sigma-bond activation of ammonia by a Ti-alkylidyne complex, [(PNP)Ti(CSiMe3)] 3 (PNP = N-[2-(PH2)2-phenyl]2-]) ,was also investigated. This reaction takes place with a smaller E(a) value of 7.5 (15.3) kcal/mol and larger exothermicity of -60.2 (-56.1) kcal/mol. These results lead us to predict that the N-H sigma-bond activation of ammonia can be achieved by these complexes.  相似文献   

13.
Geometry optimizations are performed at the DFTB3LYP6-311+G* level. Four intriguing coupling modes, totally eight stable structures are found in the potential energy surfaces of the water-assisted coupling of imidazole dimer radical cation. In these isomers, the water molecules are embedded between two imidazole moieties, and the oxygen atom is tridentate or quadridentate, respectively. The distinct redshifts of the vibrational frequencies of the O-H...N and N-H...O type H bonds indicate the strong interaction of two imidazole rings of respective isomer. Inspection of the highest occupied molecular orbital predicts the alterations of the geometry structures on oxidation and reduction. The low barrier of the fragment rotation demonstrates that the isomerization processes by experiencing the distinct transition states are easy to fulfill, especially for those with O-H...N and C-H...O H bonds. Both the energy difference of the 0 degrees-cis and 180 degrees-trans orientation and the barriers of the fragment rotation are lowered by the water assisting. The range of the zero point vibrational energy correction indicates that the influence on the complexes with N-H...O and O-H...N H bonds (0.13-0.17 kcal/mol) is more significant than those with O-H...N and C-H...O H bonds (+/-0.03 kcal/mol). The dissociation energies of these isomers indicate that the charges transfer easily through water in the dissociation process and then are distributed mainly over the imidazole ring connecting with water molecule. The isomer with proton transfer between imidazole fragments is the most stable one.  相似文献   

14.
The oxirane-trifluoromethane dimer generated in a supersonic expansion has been characterized by Fourier transform microwave spectroscopy. The rotational spectra of the parent species and of its two (13)C isotopomers in combination with ab initio calculations have been used to establish a C(s)() geometry for the dimer with the two monomers bound by one C-H.O and two C-H.F-C hydrogen bonds. An overall bonding energy of about 6.7 kJ/mol has been derived from the centrifugal distortion analysis. The lengths of the C-H.O and C-H.F hydrogen bonds, r(O.H) and r(F.H), are 2.37 and 2.68 A, respectively. The C-H.F-C interactions give rise to the HCF(3) internal rotation motion barrier of 0.55(1) kJ/mol, which causes the A-E splittings observed in the rotational spectra. The analysis of the structural and energetic features of the C-H.O and C-H.F-C interactions allows us to classify them as weak hydrogen bonds. Ab initio calculations predict these weak interactions to produce blue shifts in the C-H vibrational frequencies and shortenings of the C-H lengths.  相似文献   

15.
Dimers composed of benzene (Bz), 1,3,5-triazine (Tz), cyanogen (Cy) and diacetylene (Di) are used to examine the effects of heterogeneity at the molecular level and at the cluster level on pi...pi stacking energies. The MP2 complete basis set (CBS) limits for the interaction energies (E(int)) of these model systems were determined with extrapolation techniques designed for correlation consistent basis sets. CCSD(T) calculations were used to correct for higher-order correlation effects (deltaE(CCSD)(T)(MP2)) which were as large as +2.81 kcal mol(-1). The introduction of nitrogen atoms into the parallel-slipped dimers of the aforementioned molecules causes significant changes to E(int). The CCSD(T)/CBS E(int) for Di-Cy is -2.47 kcal mol(-1) which is substantially larger than either Cy-Cy (-1.69 kcal mol(-1)) or Di-Di (-1.42 kcal mol(-1)). Similarly, the heteroaromatic Bz-Tz dimer has an E(int) of -3.75 kcal mol(-1) which is much larger than either Tz-Tz (-3.03 kcal mol(-1)) or Bz-Bz (-2.78 kcal mol(-1)). Symmetry-adapted perturbation theory calculations reveal a correlation between the electrostatic component of E(int) and the large increase in the interaction energy for the mixed dimers. However, all components (exchange, induction, dispersion) must be considered to rationalize the observed trend. Another significant conclusion of this work is that basis-set superposition error has a negligible impact on the popular deltaE(CCSD)(T)(MP2) correction, which indicates that counterpoise corrections are not necessary when computing higher-order correlation effects on E(int). Spin-component-scaled MP2 (SCS-MP2 and SCSN-MP2) calculations with a correlation-consistent triple-zeta basis set reproduce the trends in the interaction energies despite overestimating the CCSD(T)/CBS E(int) of Bz-Tz by 20-30%.  相似文献   

16.
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.  相似文献   

17.
The molecular beam Fourier transform microwave spectrum of cyclobutanone-trifluoromethane has been assigned and measured. The carbon atom of trifluoromethane lies in the plane of the heavy atoms of cyclobutanone. The complex is stabilized by one C-H...O=C and two C-H...F-C weak hydrogen bonds. The C-H...O=C interaction, involving one carbonylic oxygen, is studied for the first time in detail with rotationally resolved spectroscopy. The two C-H...F-C weak hydrogen bonds involve two fluorine atoms of trifluoromethane and two hydrogens of the same methylenic group in the alpha position.  相似文献   

18.
We report estimates of complete basis set (CBS) limits at the second-order M?ller-Plesset perturbation level of theory (MP2) for the binding energies of the lowest-lying isomers within each of the four major families of minima of (H(2)O)(20). These were obtained by performing MP2 calculations with the family of correlation-consistent basis sets up to quadruple zeta quality, augmented with additional diffuse functions (aug-cc-pVnZ, n=D, T, Q). The MP2/CPS estimates are -200.1 (dodecahedron, 30 hydrogen bonds), -212.6 (fused cubes, 36 hydrogen bonds), -215.0 (face-sharing pentagonal prisms, 35 hydrogen bonds), and -217.9 kcal/mol (edge-sharing pentagonal prisms, 34 hydrogen bonds). The energetic ordering of the various (H(2)O)(20) isomers does not follow monotonically the number of hydrogen bonds as in the case of smaller clusters such as the different isomers of the water hexamer. The dodecahedron lies ca. 18 kcal/mol higher in energy than the most stable edge-sharing pentagonal prism isomer. The TIP4P, ASP-W4, TTM2-R, AMOEBA, and TTM2-F empirical potentials also predict the energetic stabilization of the edge-sharing pentagonal prisms with respect to the dodecahedron, albeit they universally underestimate the cluster binding energies with respect to the MP2/CBS result. Among them, the TTM2-F potential was found to predict the absolute cluster binding energies to within <1% from the corresponding MP2/CBS values, whereas the error for the rest of the potentials considered in this study ranges from 3% to 5%.  相似文献   

19.
The effect of substitutents on the strain energies of small ring compounds   总被引:1,自引:0,他引:1  
The effect of substitutents on the strain energy (SE) of cyclic molecules is examined at the CBS, G2, and G2(MP2) levels of theory. Alkyl substitutents have a meaningful effect upon the SE of small ring compounds. gem-Dimethyl substitution lowers the strain energy of cyclopropanes, cyclobutanes, epoxides, and dimethyldioxirane (DMDO) by 6-10 kcal/mol relative to an unbranched acyclic reference molecule. The choice of the reference compound is especially important for geminal electronegative substitutents. The SE of 1,1-difluorocyclopropane is estimated to be 20.5 kcal/mol relative to acyclic reference molecule 1,3-difluoropropane but is 40.7 kcal/mol with respect to the thermodynamically more stable (DeltaE = -20.2 kcal/mol) isomeric reference compound 2,2-difluoropropane. The SE of dioxirane (DO) is estimated to be approximately 18 kcal/mol while the SE of DMDO is predicted to be approximately equal to 11 kcal/mol by using homodesmotic reactions that maintain a balanced group equivalency. The total energy (CBS-APNO) of DMDO is 2.6 kcal/mol lower than that of isomeric 1,2-dioxacyclopentane that has an estimated SE of 5 kcal/mol. The thermodynamic stability of DMDO is a consequence of its relatively strong C-H (BDE = 102.7 kcal/mol) and C-CH(3) (BDE = 98.9 kcal/mol) bonds. By comparison, the calculated sec-C-H and -C-CH(3) G2 bond dissociation energies in propane are 100.3 and 90.5 kcal/mol.  相似文献   

20.
4,4-Diphenyl-2,5-cyclohexadienone (1) crystallized as four conformational polymorphs and a record number of 19 crystallographically independent molecules have been characterized by low-temperature X-ray diffraction: form A (P2(1), Z'=1), form B (P1, Z'=4), form C (P1, Z'=12), and form D (Pbca, Z'=2). We have now confirmed by variable-temperature powder X-ray diffraction that form A is the thermodynamic polymorph and B is the kinetic form of the enantiotropic system A-D. Differences in the packing of the molecules in these polymorphs result from different acidic C-H donors approaching the C=O acceptor in C-H...O chains and in synthons I-III, depending on the molecular conformation. The strength of the C-HO interaction in a particular structure correlates with the number of symmetry-independent conformations (Z') in that polymorph, that is, a short C-HO interaction leads to a high Z' value. Molecular conformation (Econf) and lattice energy (Ulatt) contributions compensate each other in crystal structures A, B, and D resulting in very similar total energies: Etotal of the stable form A=1.22 kcal mol(-1), the metastable form B=1.49 kcal mol(-1), and form D=1.98 kcal mol(-1). Disappeared polymorph C is postulated as a high-Z', high-energy precursor of kinetic form B. Thermodynamic form A matches with the third lowest energy frame based on the value of Ulatt determined in the crystal structure prediction (Cerius2, COMPASS) by full-body minimization. Re-ranking the calculated frames on consideration of both Econf (Spartan 04) and Ulatt energies gives a perfect match of frame #1 with stable structure A. Diphenylquinone 1 is an experimental benchmark used to validate accurate crystal structure energies of the kinetic and thermodynamic polymorphs separated by <0.3 kcal mol(-1) (approximately 1.3 kJ mol(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号