首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The dienyl Pauson-Khand reaction   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
The use of sulfoxides as chiral auxiliaries in asymmetric intermolecular Pauson-Khand reactions is described. After screening a wide variety of substituents on the sulfur atom in alpha,beta-unsaturated sulfoxides, the readily available o-(N,N-dimethylamino)phenyl vinyl sulfoxide (1 i) has proved to be highly reactive with substituted terminal alkynes under N-oxide-promoted conditions (CH3CN, 0 degrees C). In addition, these Pauson-Khand reactions occurred with complete regioselectivity and very high diastereoselectivity (de=86->96 %, (S,R(S)) diastereomer). Experimental studies suggest that the high reactivity exhibited by the vinyl sulfoxide 1 i relies on the ability of the amine group to act as a soft ligand on the alkyne dicobalt complex prior to the generation of the cobaltacycle intermediate. On the other hand, both theoretical and experimental studies show that the high stereoselectivity of the process is due to the easy thermodynamic epimerization at the C5 center in the resulting 5-sulfinyl-2-cyclopentenone adducts. When it is taken into account that the known asymmetric intermolecular Pauson-Khand reactions are limited to the use of highly reactive bicyclic alkenes, mainly norbornene and norbornadiene, this novel procedure constitutes the first asymmetric version with unstrained acyclic alkenes. As a demonstration of the synthetic interest of this sulfoxide-based methodology in the enantioselective preparation of stereochemically complex cyclopentanoids, we have developed very short and efficient syntheses of the antibiotic (-)-pentenomycin I and the (-)-aminocyclopentitol moiety of a hopane triterpenoid.  相似文献   

4.
5.
6.
Pauson-Khand反应的研究进展   总被引:1,自引:0,他引:1  
谢筱娟  杨高升  赵刚 《有机化学》2002,22(9):610-616
综述了过渡金属络合物参与或催化的Pauson-Khand反应,不对称Pauson- Khand反应的最新进展。  相似文献   

7.
8.
An interesting rhodium-catalyzed asymmetric aqueous Pauson-Khand-type reaction was developed. A chiral atropisomeric dipyridyldiphosphane ligand was found to be highly effective in this system. This operationally simple protocol allows both catalyst and reactants to be handled under air without precautions. Various enynes were transformed to the corresponding bicyclic cyclopentenones in good yield and enantiomeric excess (up to 95 % ee). A study of the electronic effects of the enyne substrates revealed a correlation between the electronic properties of the substrates and the ee value obtained in the product of the Pauson-Khand-type reaction. A linear free-energy relationship was observed from a Hammett study.  相似文献   

9.
10.
11.
12.
13.
The effect of different substituents, such as bromo, chloromethyl, hydroxymethyl, formyl, acetyl, carboxy, and acylated hydroxymethyl and ammonium groups, on the furan ring of substrates in gold-catalyzed phenol synthesis has been investigated. The furan ring was also replaced by different heterocycles, such as pyrroles, thiophenes, oxazoles, and a 2,4-dimethoxyphenyl group; gold catalysis then delivered no phenols, but occasionally other products were obtained. [Ru(3)(CO)(12)] also catalyzed the conversion of 1 at a low rate, [Os(3)(CO)(12)] failed as a catalyst, and with [Co(2)(CO)(8)] the alkyne complex 19 can be obtained, it does not lead to any phenol but reacts with norbornene to give the product of a Pauson-Khand reaction. Efforts to prepare vinylidene complexes of 1 provided the only evidence for these species; in the presence of a phosphane ligand with ruthenium an interesting deoxygenation to 22 was observed. The phenol 2 c was converted to the allyl ether, a building block for para-Claisen rearrangements, and to the aryl triflate, a building block for cross-coupling reactions.  相似文献   

14.
A diversity-oriented, enantioselective synthesis of new (monoprotected) carbocyclic nucleoside analogues (CNAs) with the nucleobase attached to a 3-hydroxymethyl-4-trialkylsilyloxymethylcyclopent-2-en-1-yl scaffold was developed. As a key intermediate, racemic (5SR,8RS)-8-allyloxy-2-trimethylsilyl-7-oxa-bicyclo[3.3.0]-oct-1-en-3-one was prepared from 1,1-diallyloxy-3-trimethylsilyl-2-propyne in a cobalt-mediated Pauson-Khand reaction. The enantiomerically pure material was obtained through efficient kinetic resolution (selectivity factor s >/= 40 at -78 degrees C) by means of an oxazaborolidine-catalyzed borane reduction (CBS reduction) with catecholborane. The absolute configuration of the resolved products was determined by CD spectroscopy, Mosher ester analysis, and chemical correlation. Subsequent steps involve diastereoselective ketone reduction and fully regio- and diastereoselective introduction of the nucleobase through Pd(0)-catalyzed allylic substitution. The generality of the method was demonstrated by preparation of CNAs in both enantiomeric series with all five natural nucleobases, as well as 5-bromouracil, 5-fluorouracil, and 6-chloropurine. Screening of the various compounds in a cytotoxicity assay with BJAB and ALL tumor cell lines revealed that some of the compounds possess pronounced antitumoral properties (LD50 values down to 9 microM, as determined by lactate dehydrogenase release after 48 h). By measuring DNA fragmentation, it could be shown that the activity results from induction of apoptosis.  相似文献   

15.
Right on Q: The first asymmetric total synthesis of (-)-huperzine-Q, which possesses six stereogenic centers and a spiroaminal moiety, has been achieved in 19 steps and 16.4?% overall yield. This synthesis involved a novel stereoselective Pauson-Khand reaction, a vinyl Claisen rearrangement, and a biomimetic spiroaminal formation. TBDPS=tert-butyldiphenylsilyl.  相似文献   

16.
Advances in metal catalysis have revolutionized organic synthesis, with the scope of metal-catalyzed reactions now covering nearly all areas of carbon-carbon, carbon-hydrogen, and carbon-heteroatom bond formation. For years, the goal was to develop catalysts that were highly selective for a single transformation. However, a promising current area of research is the use of a single catalyst to mediate more than one transformation in a selective manner. Whereas much early work was focused on using a catalyst for several similar transformations, recent investigations have shown that it is also possible to employ a single catalyst for several very different transformations in a single reaction sequence. This Minireview focuses on methods in which the mechanisms of the transformations are fundamentally very different.  相似文献   

17.
18.
19.
20.
Group 9 metal compounds in organic synthesis have two characteristic reactions. The first occurs because the group 9 metals have a high affinity to carbon–carbon or carbon–nitrogen π‐bonds. The first type of characteristic reactions in these group 9 metal compounds includes Pauson–Khand reactions, the Pauson–Khand‐type reactions ([2 + 2 + 1] cyclization), the other cyclizations and coupling reactions. The second occurs because the group 9 metals have a high affinity to carbonyl groups. The second type of characteristic reactions includes carbonylations such as hydroformylations, the carbonylations of methanol, amidocarbonylations and other carbonylations. The first characteristic reactions are applied for the synthesis of fine chemicals such as pharmaceuticals and agrochemicals. However, the second characteristic reactions are utilized not only for fine chemicals but also for important bulk commodity chemicals such as aldehydes, carboxylic acids and alcohols. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号