首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of transition-metal oxides into silica can give materials with useful optical, electronic or catalytic properties. For example, ZrO2-SiO2 and HfO2-SiO2 materials are of interest due to their high dielectric constants. Here we present a comparison of extended X-ray absorption fine structure and small-angle X-ray scattering results for acid-catalysed binary (MO2) x (SiO2)1 – x (M = Ti, Zr or Hf) xerogels, with x up to 0.4 and heat treatments up to 750°C. Detailed observations for TiO2-SiO2 and ZrO2-SiO2 xerogels provide a basis for interpretation of new results for HfO2-SiO2 xerogels. At low concentrations metal atoms are homogeneously incorporated into the silica network. Ti adopts coordinations of 4 or 6, and Zr and Hf both adopt higher coordination of 6 or 7 (the larger coordinations being due to ambient moisture). At higher concentrations, phase separation of metal oxide occurs. Such regions become clearly separated from the silica network for TiO2, but remain very finely mixed with silica network for ZrO2 and HfO2.  相似文献   

2.
Anatase-type TiO2 doped with 4.7 and 12.4 mol% ZrO2 that were directly precipitated as nanometer-sized particles from acidic precursor solutions of TiOSO4 and Zr(SO4)2 by simultaneous hydrolysis under hydrothermal conditions at 200°C, showed higher photocatalytic activity than pure anatase-type TiO2 for the decomposition of methylene blue. The crystallite growth and the phase transformation from anatase-type to rutile-type structure caused by heating at high temperature were retarded by doping ZrO2 into TiO2. The anatase-type TiO2 doped with ZrO2 showed high phase stability and maintained anatase-type structure even after heating at 1000°C for 1 h.  相似文献   

3.
The formation of hollow binary ZrO2/TiO2 oxide fibers using mixed precursor solutions was achieved by activated carbon fibers templating technique combined with solvothermal process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis, and infrared (IR) spectroscopy. The binary oxide system shows the anatase-type TiO2 and tetragonal phase of ZrO2, and the introduction of ZrO2 notably inhibits the growth of TiO2 nanocrystallites. Although calcined at 575 °C, all hollow ZrO2/TiO2 fibers exhibit higher surface areas (>113 m2/g) than pure TiO2 hollow fibers. The Pyridine adsorption on ZrO2/TiO2 sample indicates the presence of stronger surface acid sites. Such properties bring about that the binary oxide system possesses higher efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane than P25 TiO2. In addition, the macroscopic felt form for the resulting materials is more beneficial for practical applications than traditional catalysts forms.  相似文献   

4.
《Solid State Sciences》1999,1(5):245-255
In the ternary La2O3-TiO2-ZrO2 system the subsolidus phase relations at 1350 °C were determined using X-ray diffraction, scanning electron microscopy end energy dispersive X-ray analysis. The collected results are presented in the form of a phase diagram. In the equilibrium state there are 7 ternary and 5 binary compatible subsystems. In the system TiO2ss, ZrO2ss, ZrTiO4ss, La2Zr2O7ss and La2O3ss solid solutions were confirmed and La4Ti9O2ss and La2Ti2O7ss solid solutions were identified. The addition of ZrO2 does not stabilize the La2/3TiO3 perovskite compound, nor the addition of TiO2 a highly temperature stable compound La2/3ZrO3.  相似文献   

5.
Composite ZrO2-SiO2 powders, with different ZrO2 contents, including pure ZrO2 powders, were prepared by precipitation in SiO2 suspensions, of zirconia gels from solutions of zirconyl chloride at pH = 11. These products were investigated in connection with the phase changes in ZrO2 caused by heat-treatments. ZrO2-SiO2 mixtures containing 0–100% mol ZrO2, were studied by differential thermal analysis (DTA), X-ray powder diffraction (XRD), temperature programmed desorption combined with mass spectroscopy (TPD-MS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), to obtain information on the morphological and structural features of the particles before and during the heat treatment up to 1200°C. Specific surface areas were determined using nitrogen adsorption by the BET method. The results offer an explanation about some of the factors which can be influencing on the stabilization of metastable-cubic/tetragonal (C/T) phase of ZrO2 and the evolution of surface areas (vulcano profile) observed in the composites.  相似文献   

6.
The processes of nucleation of Li2O-Al2O3-SiO2 glasses with TiO2 and TiO2+ZrO2 as nucleating agents were discussed. The DTA peak temperature and DTA peak height shown a strong dependence on the nucleation temperature in the glass with TiO2, while in the glass with TiO2+ZrO2 this tendency was small. The optimum nucleation temperatures were 745 and 760°C for two glasses. It suggested that with TiO2+ZrO2 as nucleating agents, the crystallization had lower sensitivity for nucleation temperature, and the glass had higher nucleation efficiency than with TiO2.  相似文献   

7.
This paper described a new method for the preparation of Zr doped TiO2 nanotube arrays by electrochemical method. TiO2 nanotube arrays were prepared by anodization with titanium anode and platinum cathode. Afterwards, the formed TiO2 nanotube arrays and Pt were used as cathode and anode, respectively, for preparation of Zr/TiO2 nanotube arrays in the electrolyte of 0.1 M Zr(NO3)4 with different voltage and post-calcination process. The nanotube arrays were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and UV-Vis diffusion reflection spectra (DRS). The photocatalytic activities of these nanotubes were investigated with Rhodamine B as the model pollutant and the results demonstrated that the photocatalytic efficiency of Zr doped TiO2 nanotubes was much better than that of TiO2 nanotubes under UV irradiation. Zr/TiO2 nanotube arrays doped at 7 V and calcined at 600 °C (denoted as TiO2-7 V-600) achieved the best photocatalytic efficiency and the most optimal doping ratio was 0.047 (Zr/Ti). TiO2-7 V-600 could be reused for more than 20 times and maintained good photocatalytic activities.  相似文献   

8.
Three different sol–gel routes were used in order to study the stability and the crystallinity of the ternary system Y2O3, Ti(OBu)4, Rb2CO3. Different techniques such as FTIR, 13C NMR TGA, DTA and XRD were used to characterize xerogels and final products. Results demonstrated that using hexanoic acid during the sol step preparation influences structural changes in the precursor gel. The effect of heat treatment to eliminate the organic material from xerogels was investigated by thermal gravimetry and differential thermalanalysis. According to the ratio of acetic acid to hexanoic acid, the phase structure of TiO2, viz. anatase to rutile phase, could tailored. The photocatalytic activity of the prepared catalysts, under sunlight irradiation, was evaluated using 2‐naphthol as a pollutant model. Results showed a great enhancement in the photocatalytic efficiency for doped TiO2 sample prepared in the presence of 30acet–70hex. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Crystalline TiO2 nanowire-nanoparticle hetero-structures were successfully synthesized from titanium foils by using a simple thermal annealing method with the aid of CuCl2 at the atmospheric pressure. Nanowires were grown from Ti foils by simply annealing Ti foils at 850 °C. Then, TiCl4 was delivered to TiO2 nanowires so as to precipitate TiO2 nanoparticles on nanowire surfaces. At 750 °C reaction temperature, nanoparticles of tens of nanometers in diameter were well distributed on pre-grown nanowire forests. Nanoparticles were likely to be precipitated by TiCl4 decomposition or oxidation and that require high temperatures above ∼650 °C. Electron microscopy, X-ray diffraction, and UV-vis spectroscopy analyses show they have the rutile polycrystalline structure with a slightly enlarged bandgap compared to that of bulk TiO2. The influence of key synthesis parameters including reaction temperature, reaction time, and quantity of supplied materials on the incorporating nanoparticles was also systematically studied. The optimum reaction condition in the present paper was identified to be 750 °C annealing with repetitive 20 min reactions. A higher reaction temperature yielded larger diameter particles, and higher loading of Ti produced dense particles without changing the particle size. Finally, this method could be utilized for synthesizing other metal oxide nanowires-nanoparticle hetero-structures.  相似文献   

10.
A microcomposite powder in the system TiO2—ZrO2 as a precursor of zirconium titanate (ZT) materials has been studied by thermal methods (DTA-TG) and X-ray diffraction (XRD). The microcomposite powder has been prepared by chemical processing of crystalline TiO2 (rutile, 10 mass% anatase),as inner core, coated with in situ precipitated amorphous hydrated zirconia gel, asouter core. The morphology and chemical composition of the resultant powders has been examined by SEM-EDX (Scanning electron microscopy-energy dispersive X-ray spectroscopy). Thermal behaviour of the microcomposite powder was reported, showing the dehydration and dehydroxylation of the zirconia gel, the crystallization into metastable cubic/tetragonal zirconia at temperatures 400—470°C, and the feasibility of preparing ZT powder materials by progressive reaction of TiO2 and ZrO2 at higher temperatures (1400°C).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
We have successfully prepared transparent and porous anatase nanocrystals-dispersed films by treating the sol-gel derived TiO2-SiO2 films containing poly(ethylene glycol), PEG, with hot water. This process was done at temperatures lower than 100°C under atmospheric pressure, and thus anatase nanocrystals-dispersed films can be formed on various kinds of substrates including organic polymers with poor heat resistance. The changes in structure and composition of the TiO2-SiO2 gel films with hot water treatment were related to the formation process of anatase nanocrystals in the TiO2-SiO2 gel films with hot water treatment. The formation of anatase nanocrystals was found to proceed to hydrolysis of Si–O–Ti bonds and dissolution of SiO2 component. In addition, porous film structure formed by leaching of PEG with hot water treatment led to homogenous dispersion of anatase nonocrystals in the films.  相似文献   

12.
Many types of TiO2-SiO2 (Ti:Si=50:50 mol%) were prepared by the sol-gel procedure with and without 2-methyl-2, 4-pentanediol (MPD) as an organic ligand. The effect of MPD on the gel structure and the properties of the TiO2 crystals were studied by XRD and raman spectroscopy, and the effect of the sol standing time on the properties of the TiO2 crystals were also studied by XRD spectroscopy. In the gels with MPD, anatase of TiO2 appeared at approximately 580°C, and the crystal structures were similar despite the difference in the gel preparation procedure. The titania gels with MPD were presumed to be dispersed in the silica gel matrix without any Ti-O-Si bond. In the presence of MPD, the formation of titania gels is controlled and the specified TiO2 crystal is produced.  相似文献   

13.
In this work TiO2-SiO2 xerogels were prepared through an ultra low hydrolysis method using titanium and silicon alkoxide. The samples were heat treated to 500°C. The xerogels were characterized using TGA/DTA, FTIR, XRD and TEM. The samples showed the formation of Si–O–Ti bridges by its characteristic vibration within 925–960 cm−1 range. Si–O–Si bond angles were calculated using the central force network model. The TiO2 in all the samples crystallized on heat treatment to 500°C. The crystallite size calculated using the Scherer formula from the XRD was verified from the Transmission Electron Micrograph. Samples heat treated to 350°C remained amorphous and hence could be used as hosts for biomaterials and organic optical materials.  相似文献   

14.
A series of TiO2-SiO2 binary xerogels with the titanium content lower than 7 mol % were prepared by joint hydrolysis of tetrabutoxytitanium and tetraethoxysilane in a desiccator in the atmosphere of vapor over 5% aqueous NH3 solution under static conditions. The physicochemical properties of the material were examined by IR spectroscopy and by the kinetic method with hydrogen peroxide decomposition as model reaction.  相似文献   

15.
TiO2 nanopowders doped by Si and Zr were prepared by sol–gel method. The effects of Si and Zr doping on the structural, optical, and photo-catalytic properties of titania nanopowders have been studied by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and UV–Vis absorption spectroscopy. XRD results suggest that adding impurities has a significant effect on anatase phase stability, crystallinity, and particle size of TiO2. Titania rutile phase formation in ternary system (Ti–Si–Zr) was inhibited by Zr4+ and Si4+ co-doped TiO2 in high temperatures (500–900 °C) and 36 mol% anatase composition is retained even after calcination at 1,000 °C. The photocatalyst activity was evaluated by photocatalytic degradation kinetics of aqueous methylen orange under visible radiation. The results show that the photocatalytic activity of the 20 %Si and 15 %Zr co-doped TiO2 nanopowders have a larger degradation efficiency than pure TiO2 under visible light.  相似文献   

16.
This work was aimed at understanding the structure of SiO2–MO2 (M = Ti, Zr, Hf) and SiO2–HfO2–MO2 (M = Ti, Zr) materials, used as mixed oxide glass hosts for Er3+ ions in the fabrication of optical planar waveguides by sol-gel processing. This structural study was performed by Waveguide Raman Spectroscopy (WRS), complemented with X-ray diffraction (XRD). The admixture of TiO2 to HfO2, SiO2–HfO2 and HfO2–ZrO2 compositions was found to cause precipitation of nanocrystals of tetragonal HfO2 or ZrO2, or the formation of hafnia-titania mixed crystals, depending on the HfO2/TiO2 molar ratio.  相似文献   

17.
TiO2-SiO2 xerogels have been synthesized by the hydrolysis of tetrabutoxytitanium-tetraethoxysilane mixtures in a 10% aqueous ammonia vapor and concentrated hydrochloric acid vapor atmospheres under static conditions. The dependence of the physical and chemical properties of the xerogels on the synthetic conditions has been investigated.  相似文献   

18.
A series of ZrO2-TiO2 mixed oxides with different weight ratios (5, 20, and 30% ZrO2) were prepared by wet impregnation of TiO2-P25 Degussa with certain amounts of ZrO(NO3)2·6H2O (Fluka) dissolved in deionised water. The samples were characterized by the XRD, , , , and BET methods. An increase in ZrO2 content shifted the phase transition temperature (anatase into rutile) toward higher temperatures. X-ray diffraction using an Anton Paar XRK900 reactor chamber indicated that, in the case of samples containing ZrO2, an additional diffraction peak appeared after cooling down to 25°C. This peak could be attributed to a polymorph of TiO2 such as in the single crystal of anatase or hexagonal form of TiO2 which appears in the presence of ZrO2. Generally, the preparation of dioxide systems can modify the properties of pure compounds or generate new catalytic sites as a result of strong interaction between ZrO2 and TiO2 oxides. The binary systems exhibit advantages like strong acidity, extended specific surface area, and high thermal stability in comparison with TiO2. The article is published in the original.  相似文献   

19.
Sol-gel routes in the ternary system Al2O3-TiO5-ZrO2 were investigated to prepare Al2TiO5-ZrO2 mixed powders. The preparation of ZrTiO4 and Al2TiO5 was studied before going on with the ternary system. Zirconium titanate precursor gels were prepared from Ti(OPri)4 and Zr(OPrn)4 mixtures. The crystallization of ZrTiO4 develops at T<700°C. Al2TiO5 was prepared by different ways, using mixtures of Al(OBus)2(C6H9O3) with Ti(OPr i )4 (i), or with acetic acid addition (ii). Route (i) leads to a separate crystallization of TiO2 and -Al2O3, with subsequent formation of -Al2TiO5 at T1360°C. Although the pseudobrookite -Al2TiO5 is thermodynamically unstable below 1280°C, route (ii) leads to the crystallization of metastable -Al2TiO5 at T800°C. At increasing temperature, -Al2TiO5 decomposes into TiO2 and -Al2O3, then the two compounds react to form stable -Al2TiO5. For the ternary system, all the preparation routes which were studied lead to ZrTiO4 and -Al2O3 with subsequent reaction (at T1500°C) to give -Al2TiO5 and ZrO2.  相似文献   

20.
Microspheres of Li2TiO3 were fabricated by a classical, inorganic sol-gel process from commercially available TiCl4. Elaborated process consists of the following main steps: (1) dissolving of TiCl4 in concentrated aqueous HCl and addition of LiOH; (2) formation of sol emulsion in 2-ethylhexanol-1 containing the surfactant SPAN-80 (EH); (3) gelation of emulsion drops by extraction of water with partially dehydrated EH; (4) impregnation of gel to Li:Ti molar ratio MR = 2; (5) thermal treatment at 1200°C in order to receive chloride free product. This temperature can be significantly lowered (to 750°C) by dechlorination starting solution TiCl4 by chemical treatment of the with nitric acid to form of nitrate-stabilized titania sols. Tritium release from sol-gel made Li2TiO3 microspheres were found very close to that observed for other traditional materials, however for the first sample process starts slightly earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号