首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A class of high-order kinetic flux vector splitting schemes are presented for solving ideal quantum gas dynamics based on quantum statistical mechanics. The collisionless quantum Boltzmann equation approach is adopted and both Bose–Einstein and Fermi–Dirac gases are considered. The formulas for the split flux vectors are derived based on the general three-dimensional distribution function in velocity space and formulas for lower dimensions can be directly deduced. General curvilinear coordinates are introduced to treat practical problems with general geometry. High-order accurate schemes using weighted essentially non-oscillatory methods are implemented. The resulting high resolution kinetic flux splitting schemes are tested for 1D shock tube flows and shock wave diffraction by a 2D wedge and by a circular cylinder in ideal quantum gases. Excellent results have been obtained for all examples computed.  相似文献   

2.
Higher Order KFVS Algorithms Using Compact Upwind Difference Operators   总被引:1,自引:0,他引:1  
A family of high order accurate compact upwind difference operators have been used, together with the split fluxes of the KFVS (kinetic flux vector splitting) scheme to obtain high order semidiscretizations of the 2D Euler equations of inviscid gas dynamics in general coordinates. A TVD multistage Runge–Kutta time stepping scheme is used to compute steady states for selected transonic/supersonic flow problems which indicate the higher accuracy and low diffusion realizable in such schemes.  相似文献   

3.
根据对流迎风分裂(AUSM)思想提出一种通量分裂方法,称为K-CUSP格式.它与传统H-CUSP和E-CUSP格式的最大差异在于总能量的分裂:K-CUSP格式将无粘守恒通量中所有的运动学量分裂到对流项,所有的热力学量分裂到压力项,即总能量被分裂成动能和静焓.对于压力项的数值通量,采用一种新的界面构造方法.数值测试表明:①K-CUSP格式继承了FVS格式的简单性和稳健性.在激波后不易出现压力过冲,在膨胀区域没有振荡,优于AUSM和WPS格式;②K-CUSP格式继承了FDS格式的分辨率.激波间断的分辨率和H-CUSP、E-CUSP格式基本相同,接触间断的分辨率高于FVS格式,低于Roe、AUSM和WPS格式.AUSM和WPS格式在计算运动接触间断时,速度存在很大振荡,而新格式不存在振荡.  相似文献   

4.
The Rashba spin–orbit splitting of 2D electron gas in gated HgCdTe surface quantum wells on n-HgCdTe is studied experimentally (by the magneto-capacitance spectroscopy of Landau level method) and theoretically with emphasis on the peculiarities of spectrum at surface densities Ns corresponding to the onset of 2D subbands occupancy, where the regime of kinetic binding is realized. Although the spin–orbit splitting in kinetic confinement regime is small, the “Rashba polarization” Δn/n can achieve 100% because of strong difference in values of cutoff wave vector kc for different spin-split sub-subbands.  相似文献   

5.
A fully quantum mechanical approach to the calculation and normalization of the Franck–Condon factors for diatomic species is described. The treatment is based on the fundamental demand of completeness of the energy eigenfunctions, which results in the rigorous sum rule for the Franck–Condon overlap integrals. The importance of this general rule has been discussed and thoroughly illustrated in the case of diatomic xenon molecules. Exactly solvable reference potentials for this system have been constructed and a complete basis of the actual energy eigenstates (including both bound and scattering states) has been created. Several direct spectroscopic applications to xenon excimers are presented, and their good agreement with relevant experimental data demonstrated. In particular, a kinetic model is proposed to explain the observed oscillatory structures in the fluorescence spectra of Xe2* [Chem. Phys. Lett. 117 (1985) 301] related to their classical left turning points. The same model gives a uniform explanation to the well-known first and second emission continua of rare gases.  相似文献   

6.
A high-order accurate hybrid central-WENO scheme is proposed. The fifth order WENO scheme [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228] is divided into two parts, a central flux part and a numerical dissipation part, and is coupled with a central flux scheme. Two sub-schemes, the WENO scheme and the central flux scheme, are hybridized by means of a weighting function that indicates the local smoothness of the flowfields. The derived hybrid central-WENO scheme is written as a combination of the central flux scheme and the numerical dissipation of the fifth order WENO scheme, which is controlled adaptively by a weighting function. The structure of the proposed hybrid central-WENO scheme is similar to that of the YSD-type filter scheme [H.C. Yee, N.D. Sandham, M.J. Djomehri, Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150 (1999) 199–238]. Therefore, the proposed hybrid scheme has also certain merits that the YSD-type filter scheme has. The accuracy and efficiency of the developed hybrid central-WENO scheme are investigated through numerical experiments on inviscid and viscous problems. Numerical results show that the proposed hybrid central-WENO scheme can resolve flow features extremely well.  相似文献   

7.
以Maxwell-Boltzmann分布函数为基础的流矢量分裂方法   总被引:4,自引:0,他引:4  
将以微观气体分子运动论为基础的流矢量分裂法和二时间步的算法相结合,用于计算无粘理想气体流动.方程中的流矢量按局部平衡的Maxwell-Boltzmann分布函数分解.3个一维的算例给出了激波、接触间断和稀疏波的计算结果,并与精确解做了对比.  相似文献   

8.
We investigate the traditional kinetic flux vector splitting (KFVS) and BGK schemes for the compressible Euler equations. First, based on a careful study of the behavior of the discrete physical variables across the contact discontinuity, we analyze quantitatively the mechanism of inducing spurious oscillations of the velocity and pressure in the vicinity of the contact discontinuity for the first-order KFVS and BGK schemes. Then, with the help of this analysis, we propose a first-order modified KFVS (MKFVS) scheme which is oscillation-free in the vicinity of the contact discontinuity, provided certain consistent conditions are satisfied. Moreover, by using piecewise linear reconstruction and van Leer’s limiter, the first-order MKFVS scheme is extended to a second-order one, consequently, a nonoscillatory second-order MKFVS scheme is constructed. Finally, by combing the MKFVS schemes with the γ-model, we successfully extend the MKFVS schemes to multi-flows, and propose therefore a first- and second-order MKFVS schemes for multi-fluid computations, which are nonoscillatory across fluid interfaces. A number of numerical examples presented in this paper validate the theoretic analysis and demonstrate the good performance of the MKFVS schemes in simulation of contact discontinuities for both single- and multi-fluids.  相似文献   

9.
We analyze numerical mass fluxes with an emphasis on their capability for accurately capturing shock and contact discontinuities. The study of mass flux is useful because it is the term common to all conservation equations and the numerical diffusivity introduced in it bears a direct consequence to the prediction of contact (stationary and moving) discontinuities, which are considered to be the limiting case of the boundary layer. We examine several prominent numerical flux schemes and analyze the structure of numerical diffusivity. This leads to a detailed investigation into the cause of certain catastrophic breakdowns by some numerical flux schemes. In particular, we identify the dissipative terms that are responsible for shock instabilities, such as the odd–even decoupling and the so-called “carbuncle phenomenon”. As a result, we propose a conjecture stating the connection of the pressure difference term to these multidimensional shock instabilities and hence a cure to those difficulties. The validity of this conjecture has been confirmed by examining a wide class of upwind schemes. The conjecture is useful to the flux function development, for it indicates whether the flux scheme under consideration will be afflicted with these kinds of failings. Thus, a class of shock-stable schemes can be identified. Interestingly, a shock-stable scheme's self-correcting capability is demonstrated with respect to carbuncle-contaminated profiles for flows at both low supersonic and high Mach numbers.  相似文献   

10.
During the past decade gas-kinetic methods based on the BGK simplification of the Boltzmann equation have been employed to compute fluid flow in a finite-difference or finite-volume context. Among the most successful formulations is the finite-volume scheme proposed by Xu [K. Xu, A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171 (48) (2001) 289–335]. In this paper we build on this theoretical framework mainly with the aim to improve the efficiency and convergence of the scheme, and extend the range of application to three-dimensional complex geometries using general unstructured meshes. To that end we propose a modified BGK finite-volume scheme, which significantly reduces the computational cost, and improves the behavior on stretched unstructured meshes. Furthermore, a modified data reconstruction procedure is presented to remove the known problem that the Chapman–Enskog expansion of the BGK equation fixes the Prandtl number at unity. The new Prandtl number correction operates at the level of the partial differential equations and is also significantly cheaper for general formulations than previously published methods. We address the issue of convergence acceleration by applying multigrid techniques to the kinetic discretization. The proposed modifications and convergence acceleration help make large-scale computations feasible at a cost competitive with conventional discretization techniques, while still exploiting the advantages of the gas-kinetic discretization, such as computing full viscous fluxes for finite volume schemes on a simple two-point stencil.  相似文献   

11.
雷国东  任玉新 《计算物理》2009,26(6):799-805
将基于旋转近似Riemann求解器的二阶精度迎风型有限体积方法推广到非结构网格,采用基于网格中心的有限体积法,梯度的计算采用基于节点的方法引入更多的控制体模板,限制器的构造采用与非结构化网格相适应的形式.在求解Riemann问题时,沿具有一定物理意义的两个迎风方向,即控制体界面两侧速度差矢量方向及与之正交的方向.能够完全消除基于Riemann求解器的通量差分裂格式存在的激波不稳定或"红斑"现象.为减小计算量,采用HLL和Roe FDS混合旋转格式.  相似文献   

12.
A new model of micro-/nanoscaled heat engines consisting of two thin long tubes with the same length but different sizes of cross section, which are filled up with ideal quantum gases and operated between two heat reservoirs, is put forward. The working fluid of the heat engine cycle goes through four processes, which include two isothermal processes and two isobaric processes with constant longitudinal pressure. General expressions for the power output and efficiency of the cycle are derived, based on the thermodynamic properties of confined ideal quantum gases. The influence of the size effect on the power output and efficiency is discussed. The differences between the heat engines working with the ideal Bose gas and Fermi gas are revealed. The performance of the heat engines operating at weak gas degeneracy and high temperatures is further analyzed. The results obtained are more general and significant than those in the current literature.  相似文献   

13.
The theory of irreducible tensor systems is used to obtain general formulas for the dependence of the matrix elements of the transformed vibrational—rotational dipole moment on the rotational quantum numbers. The relations obtained are valid for molecules of arbitrary symmetry and can take into account all possible intramolecular effects and interactions (resonances, vibration—rotation interactions, splitting, etc.). As illustrations we consider molecules of the type XY4 (symmetry Td) and XY2 (symmetry C2v).Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, No. 8, pp. 3–10, August, 1987.  相似文献   

14.
A Roe-average algorithm has been derived for a granular-gas model, proposed by Goldshtein and Shapiro [Goldshtein, Shapiro, Mechanics of collisional motion of granular materials: Part 1. General hydrodynamic equations, J. Fluid Mech. 282 (1995) 75–114], which contains non-conservative terms in the Euler-like hyperbolic governing equations apart from sink terms, which arise from inelastic collision of granules and are present only in the energy equation. The non-conservative terms introduce non-isentropic effects in acoustic-wave propagation within granular media and they also contribute to the Rankine–Hugoniot relations across a discontinuity. A Roe-average algorithm, based on the same granular-gas model, was derived in the literature [V. Kamenetsky, A. Goldshtein, M. Shapiro, D. Degani, Evolution of a shock wave in a granular gas, Phys. Fluids, 12 (2000) 3036–3049] which then required the implementation of a shock-fitting technique at a discontinuity. In the present work, Roe-averaged variables have been obtained from the Rankine–Hugoniot jump relations and the non-conservative terms have been incorporated in the numerical flux formula consistent with upwind principles associated with the granular speed of sound. Results for unsteady one-dimensional granular flows, colliding with a wall, demonstrate the capability of the proposed algorithm to capture strong shocks in addition to flow features not found in molecular gases, such as a fluidized region downstream of the shock and a compacted solid-block region adjacent to the wall.  相似文献   

15.
Non-equilibrium rarefied flows are encountered frequently in supersonic flight at high altitudes, vacuum technology and in microscale devices. Prediction of the onset of non-equilibrium is important for accurate numerical simulation of such flows. We formulate and apply the discrete version of Boltzmann’s H-theorem for analysis of non-equilibrium onset and accuracy of numerical modeling of rarefied gas flows. The numerical modeling approach is based on the deterministic solution of kinetic model equations. The numerical solution approach comprises the discrete velocity method in the velocity space and the finite volume method in the physical space with different numerical flux schemes: the first-order, the second-order minmod flux limiter and a third-order WENO schemes. The use of entropy considerations in rarefied flow simulations is illustrated for the normal shock, the Riemann and the two-dimensional shock tube problems. The entropy generation rate based on kinetic theory is shown to be a powerful indicator of the onset of non-equilibrium, accuracy of numerical solution as well as the compatibility of boundary conditions for both steady and unsteady problems.  相似文献   

16.
This article provides a review of our results on nanostructurization of lead telluride, PbTe. This IV–VI group narrow-gap semiconductor exhibits paraelectric behaviour leading to a huge dielectric constant ε>1000 at helium temperatures. Because the Coulomb potential fluctuations produced by charged defects are strongly suppressed in PbTe nanostructures, one can reach the quantum ballistic regime at significantly relaxed conditions in comparison with other systems. In particular, we observe precise zero-field conductance quantization in the wires made of modulation doped PbTe/PbEuTe quantum wells where the heavily doped layer is separated from the conducting channel only by a 2 nm thick spacer layer. The second important property is the very large Zeeman splitting. It reaches 4 meV/T. Accordingly, significant spin splitting of the conductance plateaux is observed already at fields below 1 T. Therefore, the system is attractive for the construction of local spin filters. We show that the presence of metal layers does not impair the quantum ballistic properties. Furthermore, we have developed a new method of tuning the PbTe nanostructures, using laterally placed metallic electrodes. We have found that this method is more effective than previous schemes using used p–n junctions and it provides better stability of the nanostructures.  相似文献   

17.
Many researchers have reported failures of the approximate Riemann solvers in the presence of strong shock. This is believed to be due to perturbation transfer in the transverse direction of shock waves. We propose a simple and clear method to prevent such problems for the Harten–Lax–van Leer contact (HLLC) scheme. By defining a sensing function in the transverse direction of strong shock, the HLLC flux is switched to the Harten–Lax–van Leer (HLL) flux in that direction locally, and the magnitude of the additional dissipation is automatically determined using the HLL scheme. We combine the HLLC and HLL schemes in a single framework using a switching function. High-order accuracy is achieved using a weighted average flux (WAF) scheme, and a method for v-shear treatment is presented. The modified HLLC scheme is named HLLC–HLL. It is tested against a steady normal shock instability problem and Quirk’s test problems, and spurious solutions in the strong shock regions are successfully controlled.  相似文献   

18.
关于量子理想气体吉布斯定理的证明   总被引:1,自引:0,他引:1  
沈抗存  刘全慧 《大学物理》1998,17(2):25-26,19
量子理想气体不遵守焦耳定律,它的吉布斯定理需要重新证明,本文将针对弱科并的情况给出具体证明。  相似文献   

19.
研究了任意曲线坐标系中求解双曲型守恒律的高精度、无波动样条逼近有限体积方法,比较了三种不同的通量分裂技术在这种方法中的应用。数值实验表明,在不同的通量分裂技术下,该方法对流场中的激波和接触间断都有很高的分辨率。  相似文献   

20.
The orientational relaxation of optically induced anisotropy in rarefied gases and at a damped rotation has been investigated. It has been found that the anisotropy relaxation in rarefied gases is described by a reduced kinetic equation depending only on free rotation integrals. The behavior of the integral anisotropy of luminescence for free symmetric and asymmetric top molecules has been elucidated. The law of luminescence depolarization has been obtained for asymmetric top molecules in the Gordon J-diffusion model. It represents the sum of two Stern–Volmer-type dependences, whose relative contribution is determined by the orientation of the dipole moments of transitions with absorption and emission of light in the molecular coordinate system and by the principal moments of inertia of the molecular top. It has been established that in the limit of a strongly damped rotation, kinetic equations of the general form reduce to equations of rotational diffusion. A number of modified diffusion equations correctly describing the contribution of inertial effects to the orientational relaxation of anisotropy have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号