首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have demonstrated that motor control of segmental features of speech rely to some extent on sensory feedback. Control of voice fundamental frequency (F0) has been shown to be modulated by perturbations in voice pitch feedback during various phonatory tasks and in Mandarin speech. The present study was designed to determine if voice Fo is modulated in a task-dependent manner during production of suprasegmental features of English speech. English speakers received pitch-modulated voice feedback (+/-50, 100, and 200 cents, 200 ms duration) during a sustained vowel task and a speech task. Response magnitudes during speech (mean 31.5 cents) were larger than during the vowels (mean 21.6 cents), response magnitudes increased as a function of stimulus magnitude during speech but not vowels, and responses to downward pitch-shift stimuli were larger than those to upward stimuli. Response latencies were shorter in speech (mean 122 ms) compared to vowels (mean 154 ms). These findings support previous research suggesting the audio vocal system is involved in the control of suprasegmental features of English speech by correcting for errors between voice pitch feedback and the desired F0.  相似文献   

2.
The purpose of the present study was to investigate the responsiveness of the pitch-shift reflex to small magnitude stimuli and voice fundamental frequency (F(0)) level. English speakers received pitch-shifted voice feedback (+/-10, 20, 30, 40, and 50 cents, 200 ms duration) during vowel phonations at a high and a low F(0) level. Mean pitch-shift response magnitude increased as a function of pitch-shift stimulus magnitude, but when expressed as a percent of stimulus magnitude, declined from 100% with +/-10 cents to 37% with +/-50 cents stimuli. Response magnitudes were larger and latencies were shorter with a high F(0) level (16 cents;130 ms) compared to a low F(0) level (13 cents;152 ms). Data from the present study demonstrate that vocal response magnitudes are equal to small perturbation magnitudes, and they are larger and faster with a high F(0) voice. These results suggest that the audio-vocal system is optimally suited for compensating for small pitch rather than larger perturbations. Data also suggest the sensitivity of the audio-vocal system to voice perturbation may vary with F(0) level.  相似文献   

3.
Previous studies have demonstrated that perturbations in voice pitch or loudness feedback lead to compensatory changes in voice F(0) or amplitude during production of sustained vowels. Responses to pitch-shifted auditory feedback have also been observed during English and Mandarin speech. The present study investigated whether Mandarin speakers would respond to amplitude-shifted feedback during meaningful speech production. Native speakers of Mandarin produced two-syllable utterances with focus on the first syllable, the second syllable, or none of the syllables, as prompted by corresponding questions. Their acoustic speech signal was fed back to them with loudness shifted by +/-3 dB for 200 ms durations. The responses to the feedback perturbations had mean latencies of approximately 142 ms and magnitudes of approximately 0.86 dB. Response magnitudes were greater and latencies were longer when emphasis was placed on the first syllable than when there was no emphasis. Since amplitude is not known for being highly effective in encoding linguistic contrasts, the fact that subjects reacted to amplitude perturbation just as fast as they reacted to F(0) perturbations in previous studies provides clear evidence that a highly automatic feedback mechanism is active in controlling both F(0) and amplitude of speech production.  相似文献   

4.
The present study was undertaken to examine if a subject's voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present.  相似文献   

5.
The present study was conducted to test the hypothesis that intrinsic laryngeal muscles are involved in producing voice fundamental frequency (F(0)) responses to perturbations in voice pitch auditory feedback. Electromyography (EMG) recordings of the cricothyroid and thyroarytenoid muscles were made with hooked-wire electrodes, while subjects sustained vowel phonations at three different voice F(0) levels (conversational, high pitch in head register, and falsetto register) and received randomized pitch shifts (±100 or ±300 cents) in their voice auditory feedback. The median latencies from stimulus onset to the peak in the EMG and voice F(0) responses were 167 and 224 ms, respectively. Among the three different F(0) levels, the falsetto register produced compensatory EMG responses that occurred prior to vocal responses and increased along with rising voice F(0) responses and decreased for falling F(0) responses. For the conversational and high voice levels, the EMG response timing was more variable than in the falsetto voice, and changes in EMG activity with relevance to the vocal responses did not follow the consistent trend observed in the falsetto condition. The data from the falsetto condition suggest that both the cricothyroid and thyroarytenoid muscles are involved in generating the compensatory vocal responses to pitch-shifted voice feedback.  相似文献   

6.
In order to investigate control of voice fundamental frequency (F0) in speaking and singing, 24 adults had to utter the nonsense word ['ta:tatas] repeatedly, while in selected trials their auditory feedback was frequency-shifted by 100 cents downwards. In the speaking condition the target speech rate and prosodic pattern were indicated by a rhythmic sequence made of white noise. In the singing condition the sequence consisted of piano notes, and subjects were instructed to match the pitch of the notes. In both conditions a response in voice F0 begins with a latency of about 150 ms. As predicted, response magnitude is greater in the singing condition (66 cents) than in the speaking condition (47 cents). Furthermore the singing condition seems to prolong the after-effect which is a continuation of the response in trials after the frequency shift. In the singing condition, response magnitude and the ability to match the target F0 correlate significantly. Results support the view that in speaking voice F0 is monitored mainly supra-segmentally and controlled less tightly than in singing.  相似文献   

7.
The purpose of this cross-language study was to examine whether the online control of voice fundamental frequency (F(0)) during vowel phonation is influenced by language experience. Native speakers of Cantonese and Mandarin, both tonal languages spoken in China, participated in the experiments. Subjects were asked to vocalize a vowel sound /u/at their comfortable habitual F(0), during which their voice pitch was unexpectedly shifted (± 50, ± 100, ± 200, or ± 500 cents, 200 ms duration) and fed back instantaneously to them over headphones. The results showed that Cantonese speakers produced significantly smaller responses than Mandarin speakers when the stimulus magnitude varied from 200 to 500 cents. Further, response magnitudes decreased along with the increase in stimulus magnitude in Cantonese speakers, which was not observed in Mandarin speakers. These findings suggest that online control of voice F(0) during vocalization is sensitive to language experience. Further, systematic modulations of vocal responses across stimulus magnitude were observed in Cantonese speakers but not in Mandarin speakers, which indicates that this highly automatic feedback mechanism is sensitive to the specific tonal system of each language.  相似文献   

8.
The present study assessed the effect of sex on voice fundamental frequency (F(0)) responses to pitch feedback perturbations during sustained vocalization. Sixty-four native-Mandarin speakers heard their voice pitch feedback shifted at ± 50, ± 100, or ± 200 cents for 200 ms, five times during each vocalization. The results showed that, as compared to female speakers, male speakers produced significantly larger but slower vocal responses to the pitch-shifted stimuli. These findings reveal a modulation of vocal response as a function of sex, and suggest that there may be a differential processing of vocal pitch feedback perturbations between men and women.  相似文献   

9.
Vocal vibrato and tremor are characterized by oscillations in voice fundamental frequency (F0). These oscillations may be sustained by a control loop within the auditory system. One component of the control loop is the pitch-shift reflex (PSR). The PSR is a closed loop negative feedback reflex that is triggered in response to discrepancies between intended and perceived pitch with a latency of approximately 100 ms. Consecutive compensatory reflexive responses lead to oscillations in pitch every approximately 200 ms, resulting in approximately 5-Hz modulation of F0. Pitch-shift reflexes were elicited experimentally in six subjects while they sustained /u/ vowels at a comfortable pitch and loudness. Auditory feedback was sinusoidally modulated at discrete integer frequencies (1 to 10 Hz) with +/- 25 cents amplitude. Modulated auditory feedback induced oscillations in voice F0 output of all subjects at rates consistent with vocal vibrato and tremor. Transfer functions revealed peak gains at 4 to 7 Hz in all subjects, with an average peak gain at 5 Hz. These gains occurred in the modulation frequency region where the voice output and auditory feedback signals were in phase. A control loop in the auditory system may sustain vocal vibrato and tremorlike oscillations in voice F0.  相似文献   

10.
The present study tested whether subjects respond to unanticipated short perturbations in voice loudness feedback with compensatory responses in voice amplitude. The role of stimulus magnitude (+/- 1,3 vs 6 dB SPL), stimulus direction (up vs down), and the ongoing voice amplitude level (normal vs soft) were compared across compensations. Subjects responded to perturbations in voice loudness feedback with a compensatory change in voice amplitude 76% of the time. Mean latency of amplitude compensation was 157 ms. Mean response magnitudes were smallest for 1-dB stimulus perturbations (0.75 dB) and greatest for 6-dB conditions (0.98 dB). However, expressed as gain, responses for 1-dB perturbations were largest and almost approached 1.0. Response magnitudes were larger for the soft voice amplitude condition compared to the normal voice amplitude condition. A mathematical model of the audio-vocal system captured the main features of the compensations. Previous research has demonstrated that subjects can respond to an unanticipated perturbation in voice pitch feedback with an automatic compensatory response in voice fundamental frequency. Data from the present study suggest that voice loudness feedback can be used in a similar manner to monitor and stabilize voice amplitude around a desired loudness level.  相似文献   

11.
Previous studies have shown that voice fundamental frequency (F0) is modified by changes in the pitch of vocal feedback and have demonstrated that the audio-vocal control system has both open- and closed-loop control properties. However, the extent to which this system operates in closed-loop fashion may have been underestimated in previous work. Because the step-type stimuli used were very rapid, and people are physically unable to change their voice F0 as rapidly as the stimuli, feedback responses might have been reduced or suppressed. In the present study, pitch-shift stimuli, consisting of a disparity between voice F0 and feedback pitch of varying ramp onset velocities, were presented to subjects vocalizing a steady /ah/ sound to examine the effect of stimulus onset on voice F0 responses. Results showed that response velocity covaried with stimulus velocity. Response latency and time of the peak response decreased with increases in stimulus velocity, while response magnitude decreased. A simple feedback model reproduced most features of these responses. These results strongly support previous suggestions that the audio-vocal system monitors auditory feedback and, through closed-loop negative feedback, adjusts voice F0 so as to cancel low-level fluctuations in F0.  相似文献   

12.
To determine if the speaking fundamental frequency (F0) profiles of English and Mandarin differ, a variety of voice samples from male and female speakers were compared. The two languages' F0 profiles were sometimes found to differ, but these differences depended on the particular speech samples being compared. Most notably, the physiological F0 ranges of the speakers, determined from tone sweeps, hardly differed between the two languages, indicating that the English and Mandarin speakers' voices are comparable. Their use of F0 in single-word utterances was, however, quite different, with the Mandarin speakers having higher maximums and means, and larger ranges, even when only the Mandarin high falling tone was compared with English. In contrast, for a prose passage, the two languages were more similar, differing only in the mean F0, Mandarin again being higher. The study thus contributes to the growing literature showing that languages can differ in their F0 profile, but highlights the fact that the choice of speech materials to compare can be critical.  相似文献   

13.
《Journal of voice》2019,33(6):851-859
PurposeThe pitch-shift reflex (PSR) is the adaptation of the fundamental frequency during phonation and speech and describes the auditory feedback control. Speakers without voice and speech disorders mostly show a compensation of the pitch change in the auditory feedback and adapt their fundamental frequency to the opposite direction. Dysphonic patients often display problems with the auditory perception and control of their voice during therapy. Our study focuses on the auditory and kinesthetic control mechanisms of patients with muscle tension dysphonia (MTD) and speakers without voice and speech problems. Main purpose of the study is the analysis of the functionality of the control mechanisms within phonation and speech between patients with MTD and normal speakers.MethodSixty-one healthy subjects (17 male, 44 female) and 22 patients with MTD (7 male, 15 female) participated following two paradigms including a sustained phonation (vowel /a/) and speech ([‘mama]). Within both paradigms the fundamental frequency of the auditory feedback was increased synthetically. For the analysis of the PSR the electroencephalogram, electroglottography, the voice signal, and the high-speed endoscopy data were recorded simultaneously. The PSR in the electroencephalogram was detected via the N100 and the mismatch negativity. Statistical tests were applied for the detection of the PSR in the physiological response within the electroglottography, voice, and high-speed endoscopy signals. The results were compared between both groups.ResultsNo differences were found between the controls and patients with MTD regarding latency and magnitude of the perception of the pitch shift in both paradigms, but for the magnitude of the behavioral response. Differences also could be found for both groups between the “no pitch” and “pitch” condition of the two paradigms regarding vocal fold dynamics and voice quality. Patients with MTD showed more vibrational irregularities during the PSR than the controls, especially regarding the symmetry of vocal fold dynamics.ConclusionPatients with MTD seem to have a disturbed interaction between the auditory and kinesthetic feedback inducing the execution of an overriding behavioral response.  相似文献   

14.
张璐  祖漪清  闫润强 《声学学报》2012,37(4):448-456
研究了语调短语边界处焦点、词重音位置与上升的边界调对语调短语末词基频模式的影响。通过分析两个美式英语语料库语调短语末词的声学特征,我们发现当该单词是焦点时,重音的基频峰值比边界调的尾值高;边界调在重音实现后才充分体现出来;词重音在音节结构中后移会压缩词重音后基频调域范围。当语调短语末词不是焦点时,边界调的上升趋势从开始就体现出来,并压制了词重音的基频凸显。我们的结论是,焦点可以通过提升词重音基频峰值的高度完成;焦点和边界调实现的力度受词重音所处位置限制,在极端的情况下,边界调只能在语调短语最末音节的尾部实施。在有限音段上这些韵律特征都有表达其功能最彻底的一段位置,它们竞相展现,此消彼长。   相似文献   

15.
There is a tendency across languages to use a rising pitch contour to convey question intonation and a falling pitch contour to convey a statement. In a lexical tone language such as Mandarin Chinese, rising and falling pitch contours are also used to differentiate lexical meaning. How, then, does the multiplexing of the F(0) channel affect the perception of question and statement intonation in a lexical tone language? This study investigated the effects of lexical tones and focus on the perception of intonation in Mandarin Chinese. The results show that lexical tones and focus impact the perception of sentence intonation. Question intonation was easier for native speakers to identify on a sentence with a final falling tone and more difficult to identify on a sentence with a final rising tone, suggesting that tone identification intervenes in the mapping of F(0) contours to intonational categories and that tone and intonation interact at the phonological level. In contrast, there is no evidence that the interaction between focus and intonation goes beyond the psychoacoustic level. The results provide insights that will be useful for further research on tone and intonation interactions in both acoustic modeling studies and neurobiological studies.  相似文献   

16.
The pitch-shift reflex is a sophisticated system that produces a "compensatory" response in voice F0 that is opposite in direction to a change in voice pitch feedback (pitch-shift stimulus), thus correcting for the discrepancy between the intended voice F0 and the feedback pitch. In order to more fully exploit the pitch-shift reflex as a tool for studying the influence of sensory feedback mechanisms underlying voice control, the optimal characteristics of the pitch-shift stimulus must be understood. The present study was undertaken to assess the effects of altering the duration of the interstimulus interval (ISI) and the number of trials comprising an average on measures of the pitch-shift reflex. Pitch-shift stimuli were presented to vocalizing subjects with ISI of 5.0, 2.5, 1.0, and 0.5 s to determine if an increase in ISI altered response properties. With each ISI, measures of event-related averages of the first 10, 15, 20, or 30 pitch-shift reflex responses were compared to see if increases in the number of responses comprising an event-related average altered response properties. Measures of response latency, peak time, magnitude, and prevalence were obtained for all ISI and average conditions. While quantitative measures were similar across ISI and averaging conditions, we observed more instances of "non-responses" with averages of ten trials as well as at an ISI of 0.5 s. These findings suggest an ISI of 1.0 s and an average consisting of at least 15 trials produce optimal results. Future studies using these stimulus parameters may produce more reliable data due to the fivefold decrease in subject participation time and a concomitant decrease in fatigue, boredom, and inattention.  相似文献   

17.
The differences of speaking frequency and intensity in different tonal dialects has not been widely investigated. The purposes of this study were (1) to compare the speaking frequency and speaking intensity ranges of Mandarin and Min and (2) to compare the speaking frequency and intensity ranges of Mandarin and Min to those of American English. The subjects were 80 normal Taiwanese adults divided into two dialect groups, Mandarin and Min. The speaking F0, the highest speaking F0, the lowest speaking F0, the maximum range of speaking F0, and the intensity counterpart were obtained from reading in their native dialects. Statistical analysis revealed that Min speakers had a significantly greater maximum range of speaking intensity and a smaller lowest speaking intensity than Mandarin speakers, which indicated tonal effects by speakers of the Min dialect. Moreover, Mandarin and Min speakers had a greater maximum range of speaking F0 and maximum range of speaking intensity than American English speakers. The data may provide an assessment tool for Mandarin speakers and Min speakers.  相似文献   

18.
Auditory feedback has been suggested to be important for voice fundamental frequency (F0) control. The present study featured a new technique for testing this hypothesis by which the pitch of a subject's voice was modulated, fed back over earphones, and the resultant change in the emitted voice F0 was measured. The responses of 67 normal, healthy young adults were recorded as they attempted to ignore intermittent upward or downward shifts in pitch feedback while they sustained steady vowel sounds (/a/) or sang musical scales. Ninety-six percent of subjects increased their F0 when the feedback pitch was decreased, and 78% of subjects decreased their F0 when the pitch feedback was increased. Latencies of responses ranged from 104 to 223 ms. Results indicate people normally rely on pitch feedback to control voice F0.  相似文献   

19.
Post-low bouncing is a phenomenon whereby after reaching a very low pitch in a low lexical tone, F(0) bounces up and then gradually drops back in the following syllables. This paper reports the results of an acoustic analysis of the phenomenon in two Mandarin Chinese corpora and presents a simple mechanical model that can effectively simulate this bouncing effect. The acoustic analysis shows that most of the F(0) dynamic features profiling the bouncing effect strongly correlate with the amount of F(0) lowering in the preceding low-tone syllable, and that the additional F(0) raising commences at the onset of the first post-low syllable. Using the quantitative Target Approximation model, this bouncing effect was simulated by adding an acceleration adjustment to the initial F(0) state of the first post-low syllable. A highly linear relation between F(0) lowering and estimated acceleration adjustment was found. This relation was then used to effectively simulate the bouncing effect in both the neutral tone and the full tones. The results of the analysis and simulation are consistent with the hypothesis that the bouncing effect is due to a temporary perturbation of the balance between antagonistic forces in the laryngeal control in producing a very low pitch.  相似文献   

20.
The experiment compared the pitches of complex tones consisting of unresolved harmonics. The fundamental frequency (F0) of the tones was 250 Hz and the harmonics were bandpass filtered between 5500 and 7500 Hz. Two 20-ms complex-tone bursts were presented, separated by a brief gap. The gap was an integer number of periods of the waveform: 0, 4, or 8 ms. The envelope phase of the second tone burst was shifted, such that the interpulse interval (IPI) across the gap was reduced or increased by 0.25 or 0.75 periods (1 or 3 ms). A "no shift" control was also included, where the IPI was held at an integer number of periods. Pitch matches were obtained by varying the F0 of a comparison tone with the same temporal parameters as the standard but without the shift. Relative to the no-shift control, the variations in IPI produced substantial pitch shifts when there was no gap between the bursts, but little effect was seen for gaps of 4 or 8 ms. However, for some conditions with the same IPI in the shifted interval, an increase in the IPI of the comparison interval from 4 to 8 ms (gap increased from 0 to 4 ms) changed the pitch match. The presence of a pitch shift suggests that the pitch mechanism is integrating information across the two tone bursts. It is argued that the results are consistent with a pitch mechanism employing a long integration time for continuous stimuli that is reset in response to temporal discontinuities. For a 250-Hz F0, an 8-ms IPI may be sufficient for resetting. Pitch models based on a spectral analysis of the simulated neural spike train, on an autocorrelation of the spike train, and on the mean rate of pitch pulses, all failed to account for the observed pitch matches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号