首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The propagation of focused femtosecond laser pulses with supercritical peak powers in air has been investigated by the methods of optical visualization, profilometry, and calorimetry. Laser pulses with supercritical powers create a bundle of submillimeter filaments with a diameter of about 5 μm ahead of the lens focus; the maximum number of filaments in the beam cross section and their length increase linearly and sublinearly, respectively, with the radiation peak power. The optical visualization and calorimetry indicate that the plasma channels of filaments are optical contrast (a plasma density of 1018–1019 cm−3), ensuring the refraction of laser radiation incident on them.  相似文献   

2.
The formation of fluorescent channels with color centers in LiF crystals under the action of the multiple filamentation of femtosecond laser pulses is studied experimentally and theoretically for pulse powers around four orders of magnitude higher than the critical self-focusing value.  相似文献   

3.
We report on a systematic study of the laser polarization effect on a femtosecond laser filamentation in air.By changing the laser's ellipticity from linear polarization to circular polarization, the onset position of laser filament formation becomes farther from the focusing optics, the filament length is shorter, and less laser energy is deposited. The laser polarization effect on air filaments is supported by a simulation and analysis of the polarization-dependent critical power and ionization rates in air.  相似文献   

4.
Ultrabroadband pulses exhibit a frequency-dependent mode size owing to the wavelength dependence of free-space diffraction. Additionally, rather complex lateral dependence of the temporal pulse shape has been reported for Kerr-lens mode-locked lasers and broadband amplifier chains and in frequency-domain pulse shapers, for example. We demonstrate an ultrashort-pulse characterization technique that reveals lateral pulse-shape variations by spatially resolved amplitude and phase measurements by use of spectral phase interferometry for direct electric-field reconstruction (SPIDER). Unlike with autocorrelation techniques, with SPIDER we can obtain spatially resolved pulse characterization even after the nonlinear process. Thus, with this method the spectral phase of the pulse can be resolved very rapidly along one lateral beam axis in a single measurement.  相似文献   

5.
Complex experimental study of spectral, spatial and temporal behaviors of the IR shifted component observed under filamentation of the collimated femtosecond laser beam (80 GW, 50 fs, 805 nm) in molecular gases showed that this component behaves like a Raman soliton. Namely, it is confined in all domains: (a) it propagates within the filament core, (b) it has a stable duration of 30 fs along the filament, and (c) its spectrum shifts as a whole from 820 to 870 nm on the distance of 2 m from the filament start. A simple model explaining the origin of anomalous group velocity dispersion in the plasma channel of a filament is suggested.  相似文献   

6.
7.
This work reports a temporal characteristic of a laser pulse undergoing filamentation in air. The diagnostic method is based on two-photon fluorescence measurement. The results show that the pulse duration, chirp rate and beam radius could be simultaneously quantitatively retrieved. This simple technique would be useful in practice to trace the underlying dynamics of filamentation in air.  相似文献   

8.
The filamentation of femtosecond light pulses in air is numerically and experimentally investigated for beam powers reaching several TW. Beam propagation is shown to be driven by the interplay between intense, robust spikes created by the defects of the input beam and random nucleation of light cells. Evolution of the filament patterns can be qualitatively reproduced by an averaged-in-time (2D+1)-dimensional model derived from the propagation equations for ultrashort pulses.  相似文献   

9.
We report the experiments on the optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate and with several hundreds micro-joule-energy.A 10m-long filament and its breakup and merging at the nonlinear focal region produced by modulational instability of femtosecond laser pulses in air are observed.A simple model based on the nonlinear Schroedinger equation coupled with multiphoton ionization law is presented to explain the several experimental results.  相似文献   

10.
In this work we present experiments by focusing 42 femtosecond laser pulses in air using three differentfocal length lenses: f=100, 30 and 5 cm. For the longest focal length, only the filament, which is aweak plasma column,is observed. When the shorter focal length lens is used, a high density plasma isgenerated near the geometrical focus and coexists with a weak plasma channel of the filamemt. Under thetightest focusing condition, filamentation is prevented and only a strong plasma volume appears at tehgeometrical focus.  相似文献   

11.
飞秒激光成丝超连续辐射具有高强度和高时空相干性等优点,作为一种超宽带光源在很多领域都具有广泛的应用前景.本文提出一种结合微透镜阵列的空间调制和基于液晶空间光调制器的时域整形的飞秒激光脉冲整形方式,利用基于遗传算法的反馈优化控制,实现了飞秒激光在熔融石英中成丝产生的超连续辐射强度的调制,得到了在一定范围内光谱强度可控的超连续辐射光谱;光谱的能量密度可以从0.03μJ/nm调制到0.09μJ/nm,其能量密度变化达到了初始值的3倍.计算了典型迭代代数对应的整形脉冲时域包络,分析了超连续光谱随迭代代数的演化趋势,结果表明,脉冲包络的峰值强度和波形分布是影响超连续光谱展宽和强度的主要物理原因.  相似文献   

12.
郝作强  张杰 《物理》2004,33(10):741-747
超短脉冲强激光在空气中传输时由于非线性克尔自聚焦效应会使激光光束聚焦,造成空气的离化而形成等离子体,等离子体对激光光束又会产生散焦作用,这两种过程的动态平衡可以形成很长的等离子体通道,从而产生一系列复杂而有趣的现象.文章对通道形成的机理、锥角辐射、超连续谱和三次谐波的产生进行了阐述,并介绍了目前等离子体通道形成的几种理论模型.文章还对通道内的各种复合和辐射机制进行了分析.  相似文献   

13.
The filamentation of two co-propagated femtosecond (fs) laser pulses in air is studied by numerical simulation. Depending on the different initial separation distances, relative phase shift and crossing angles, simulations show attraction, fusion, repulsion and collision of the two pulses. A long plasma channel can be formed by two in-phase pulses with small separation distance and cross angle. The coupling of two laser beam becomes weaker when the separation distance or cross angle between two beams is larger. In this case, the filamentation of each pulse develops independently. Our simulation results will be helpful for understanding the effect of the initial amplitude and phase modulation of laser pulse on the filamentation characteristics.  相似文献   

14.
Formation and wandering of filaments in air are studied both experimentally and numerically. Filament-center deflections are collected from 1100 shots of 190-fs and 800-nm pulses in the plane perpendicular to the propagation direction. To calculate the filament wandering in air we have developed a model of powerful femtosecond laser pulse filamentation in the Kolmogorov atmospheric turbulence and employed the Monte Carlo method to model the propagation of several hundred laser pulses. Statistical processing of experimental and numerical data shows that filament-center displacements in the transverse plane obey the Rayleigh-distribution law. Parameters of the Rayleigh distribution obtained for numerical and experimental data are close to each other. Received: 23 May 2001 / Revised version: 26 September 2001 / Published online: 29 November 2001  相似文献   

15.
利用高重复频率(1kHz)、吉瓦级飞秒激光脉冲实验验证了高强度飞秒脉冲在空气中的自 压缩现象,研究了入射脉冲在不同初始啁啾情况下经空气中聚焦成丝后,时域及频域特性随 入射脉冲能量的变化规律.实验结果表明,在无需后继色散补偿情况下,高强度飞秒脉冲仅 通过在空气中的非线性传输过程就可以实现脉冲压缩;在入射脉冲为负啁啾情况下,实验观 察到脉冲光谱及时域宽度同时得到压缩,并可获得比激光源所能提供的更短的近双曲正割型 变换限脉冲. 关键词: 高强度飞秒激光脉冲 自压缩 自聚焦  相似文献   

16.
Peculiarities of the self-focusing and filamentation of high-power femtosecond laser pulses in air have been experimentally and theoretically studied under conditions of broad variation of the beam focusing parameter. The influence of the numerical aperture (NA) of the initial radiation focusing on the main characteristics of laser-induced plasma columns (characteristic transverse size, length, and concentration of free electrons) is considered. It is established that, for a rigid (NA > 0.05) initial laser beam focusing, the transverse size of the plasma channel ceases to decrease at a level of R pl ≈ 2–4 μm as a result of strong refraction of radiation on the plasma formed at the focal waist, which prevents further contraction of the laser beam due to its focusing and self-focusing.  相似文献   

17.
Watanabe W  Asano T  Yamada K  Itoh K  Nishii J 《Optics letters》2003,28(24):2491-2493
Refractive-index changes can be induced by filamentation of 800-nm, 1-kHz femtosecond laser pulses in silica glass. Two-dimensional translation of a 40-microm-long filament leads to the formation of a curved waveguide because of bending by the previously induced refractive-index change. The fabrication of 2-mm directional couplers to split the coupled beam into 1:1 at a wavelength of 632.8 nm is demonstrated. The realization of three-dimensional directional couplers and wavelength division in the output from the couplers is also demonstrated.  相似文献   

18.
A systematic research on intensity clamping phenomenon was conducted both in air and argon by using a TW level femtosecond laser. Though the laser peak power was increased from 0.1 up to 1.5 TW in the experiment, highly stabilized peak intensity inside the filament was observed in both gases. The peak intensities inside filaments were experimentally determined to be about 6.4 × 1013 W/cm2 (f = 20 cm) in air and 1.2, 1.3, and 1.7 × 1014 W/cm2 when different focal lenses (f = 100, 60, and 20 cm) were used in argon, respectively.  相似文献   

19.
对作者所提出的无干涉条纹直接电场重构测量飞秒脉冲的振幅和相位的新方法作出进一步理论分析,并通过实验测量说明该方法的优越性.该方法克服了传统的SPIDER方法的弊病,能得到一组无干涉条纹的图像,排除传统方法必须使用傅里叶变换滤波消除干涉条纹而引进的系统误差,使得该方法能够采用较简便设备且能较准确测量飞秒脉冲强度轮廓和相位.最后给出同一条件下新方法和传统SPIDER方法分别重构的脉冲强度自相关曲线与实验测量结果的比较,以说明新方法的有效性和优越性.  相似文献   

20.
The competition between optical breakdown (OB) and laser-pulse filamentation (FL) in bulk fused silica is investigated by using a 1-kHz femtosecond infrared laser. We measure input powers corresponding to the threshold of OB and FL in terms of external focusing conditions. The results demonstrate that OB precedes FL for tight focusing, whereas for sufficiently long focal lengths FL takes places at a lower power than OB does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号