首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Ramdani  G. Tarrago 《Tetrahedron》1981,37(5):991-1000
Polypyrazolic macrocycles are shown to be excellent complexing agents for the alkali metal cations. The study is particularly focussed on the stoichiometry of the isolated complexes, as well as the rates of cation transport across a liquid membrane.  相似文献   

2.
Guanidinium receptors as enantioselective amino acid membrane carriers   总被引:2,自引:0,他引:2  
A number of artificial carriers for the transport of zwitterionic aromatic amino acids across bulk model membranes (U-tube type) have been prepared and evaluated. 1,2-Dichloroethane and dichloromethane were employed in the organic phase. All compounds are based on a bicyclic chiral guanidinium scaffold that ideally complements the carboxylate function. The guanidinium central moiety was attached to crown ethers or lasalocid A as specific subunits for ammonium recognition as well as to aromatic or hydrophobic residues to evaluate their potential interaction with the side chains of the guest amino acids. The subunits were linked to the guanidinium through ester or amide connectors. Amides were found to be better carriers than esters, though less enantioselective. On the other hand, crown ethers were superior to lasalocid derivatives. As expected, transport rates were dependent on the carrier concentration in the liquid membrane. Reciprocally, enantioselectivities were much higher at lower carrier concentrations. The results show that our previously proposed three-point binding model (J. Am. Chem. Soc. 1992, 114, 1511-1512), involving the participation of the aromatic or hydrophobic residue to interact with the side chains of the amino acid guest, is unnecessary to explain the high enantioselectivities observed. Molecular dynamics fully support a two-point model involving only the guanidinium and crown ether moieties. These molecules constitute the first examples of chiral selectors for underivatized amino acids acting as carriers under neutral conditions.  相似文献   

3.
Macrocyclic oligocholates were found in a previous work (Cho, H.; Widanapathirana, L.; Zhao, Y. J. Am. Chem. Soc.2011, 133, 141-147) to stack on top of one another in lipid membranes to form nanopores. Pore formation was driven by a strong tendency of the water molecules in the interior of the amphiphilic macrocycles to aggregate in a nonpolar environment. In this work, cholate oligomers terminated with guanidinium and carboxylate groups were found to cause efflux of hydrophilic molecules such as glucose, maltotriose, and carboxyfluorescein (CF) from POPC/POPG liposomes. The cholate trimer outperformed other oligomers in the transport. Lipid-mixing assays and dynamic light scattering ruled out fusion as the cause of leakage. The strong dependence on chain length argues against random intermolecular aggregates as the active transporters. The efflux of glucose triggered by these compounds increased significantly when the bilayers contained 30 mol% cholesterol. Hill analysis suggested that the active transporter consisted of four molecules. The oligocholates were proposed to fold into "noncovalent macrocycles" by the guanidinium-carboxylate salt bridge and stack on top of one another to form similar transmembrane pores as their covalent counterparts.  相似文献   

4.
The synthesis, structure, and physical properties of macrocycles have fascinated chemists for many years. Their inherent properties make them useful in areas as diverse as ion transport across membranes, development of new antibiotics, and catalysis. In this Review, the authors examine the chemistry of macrocycles containing non-peptidic amino acid derived molecules; the analysis is discussed in terms of function, rather than structure or synthesis. It is revealed that the diverse and imaginative structures created by synthetic chemists are not being fully exploited in application-driven endeavors.  相似文献   

5.
Hydrophobic interactions normally are not considered a major driving force for self-assembling in a hydrophobic environment. When macrocyclic oligocholates were placed within lipid membranes, however, the macrocycles pulled water molecules from the aqueous phase into their hydrophilic internal cavities. These water molecules had strong tendencies to aggregate in a hydrophobic environment and templated the macrocycles to self-assemble into transmembrane nanopores. This counterintuitive hydrophobic effect resulted in some highly unusual transport behavior. Cholesterol normally increases the hydrophobicity of lipid membranes and makes them less permeable to hydrophilic molecules. The permeability of glucose across the oligocholate-containing membranes, however, increased significantly upon the inclusion of cholesterol. Large hydrophilic molecules tend to have difficulty traversing a hydrophobic barrier. The cyclic cholate tetramer, however, was more effective at permeating maltotriose than glucose.  相似文献   

6.
The control of ion transport across cell membranes by light is an attractive strategy that allows targeted, fast control of precisely defined events in the biological membrane. Here we report a novel general strategy for the control of membrane potential and ion transport by using charge-separation molecules and light. Delivery of charge-separation molecules to the plasma membrane of PC12 cells by a membranous nanocarrier and subsequent light irradiation led to depolarization of the membrane potential as well as inhibition of the potassium ion flow across the membrane. Photoregulation of the cell membrane potential and ion transport by using charge-separation molecules is highly promising for control of cell functions.  相似文献   

7.
Transcellular diffusion across the absorptive epithelial cells (enterocytes) of the small intestine is the main route of absorption for most orally administered drugs. The process by which lipophilic compounds transverse the aqueous environment of the cytoplasm, however, remains poorly defined. In the present study, we have identified a structurally diverse group of lipophilic drugs that display low micromolar binding affinities for a cytosolic lipid-binding protein - intestinal fatty acid-binding protein (I-FABP). Binding to I-FABP significantly enhanced the transport of lipophilic drug molecules across a model membrane, and the degree of transport enhancement was related to both drug lipophilicity and I-FABP binding affinity. These data suggest that intracellular lipid-binding proteins such as I-FABP may enhance the membrane transport of lipophilic xenobiotics and facilitate drug access to the enterocyte cytoplasm and cytoplasmic organelles.  相似文献   

8.
The plasma membrane regulates the transport of molecules into the cell. Small hydrophobic molecules can diffuse directly across the lipid bilayer. However, larger molecules require specific transporters for their entry into the cell. Regulating the cellular entry of small molecules and proteins is a challenging task. The introduction of halogen, particularly iodine, to small molecules and proteins is emerging to be a promising strategy to improve the cellular uptake. Recent studies reveal that a simple substitution of hydrogen atom with iodine not only increases the cellular uptake, but also regulates the membrane transport. The strong halogen-bond-forming ability of iodine atoms plays a crucial role in the transport and the introduction of iodine may provide an efficient strategy for studying membrane activity and cellular functions and improving the delivery of therapeutic agents. This Concept article does not provide a comprehensive picture of membrane transport but highlights halogen-substitution as a novel strategy for understanding and regulating the cell-membrane traffic.  相似文献   

9.
Amphiphilic macrocycles consisting of cholates and l-tryptophan were prepared by the copper-catalysed alkyne–azide cycloaddition. The macrocycles helped glucose permeate lipid bilayer membranes. The macrocycle with two cholates was significantly more active in the glucose transport than the one with three cholates. Inclusion of 30–50% cholesterol in the bilayer accelerated the glucose transport monotonously. The unusual cholesterol effect was explained by the hydrophobically driven pore formation, in which the associative interactions of the water molecules inside the macrocycles prompted the macrocycles to stack over one another to avoid unfavourable water–lipid hydrocarbon contact. Fluorescence quenching by water- and oil-soluble quenchers provided additional evidence for the better penetration of the dicholate macrocycle into the bilayers, consistent with the stacking model. Rigidity in the macrocycle structure was hypothesised to be the main reason for the higher transport activity and deeper membrane-penetration of the dicholate macrocycle compared with those of the tricholate.  相似文献   

10.
A class of six-residue, shape-persistent aromatic oligoamide macrocycles bind the guanidinium ion with very high selectivity.  相似文献   

11.
The aim of the present work was to design functionalized lipidic membranes that can selectively interact with lanthanide ions at the interface and to exploit the interaction between membranes induced by this molecular-recognition process with a view to building up self-assembled vesicles or controlling the permeability of the membrane to lanthanide ions. Amphiphilic molecules bearing a beta-diketone unit as head group were synthesized and incorporated into phospholipidic vesicles. Binding of Eu(III) ions to the amphiphilic ligand can lead to formation of a complex involving ligands of the same vesicle membrane (intravesicular complex) or of two different vesicles (intervesicular complex). The effect of Eu(III) ions on vesicle behavior was studied by complementary techniques such as fluorimetry, light scattering, and electron microscopy. The formation of an intravesicular luminescent Eu/beta-diketone ligand (1/2) complex was demonstrated. The linear increase in the binding constant with increasing concentration of ligands in the membrane revealed a cooperative effect of the ligands distributed in the vesicle membrane. The luminescence of this complex can be exploited to monitor the kinetics of complexation at the interface of the vesicles, as well as ion transport across the membrane. By encapsulation of 2,6-dipicolinic acid (DPA) as a competing ligand which forms a luminescent Eu/DPA complex, the kinetics of ion transport across the membrane could be followed. These functional vesicles were shown to be an efficient system for the selective transport of Eu(III) ions across a membrane with assistance by beta-diketone ligands.  相似文献   

12.
Indole is an important biological signalling molecule produced by many Gram positive and Gram negative bacterial species, including Escherichia coli. Here we study the effect of indole on the electrical properties of lipid membranes. Using electrophysiology, we show that two indole molecules act cooperatively to transport charge across the hydrophobic core of the lipid membrane. To enhance charge transport, induced by indole across the lipid membrane, we use an indole derivative, 4 fluoro‐indole. We demonstrate parallels between charge transport through artificial lipid membranes and the function of complex eukaryotic membrane systems by showing that physiological indole concentrations increase the rate of mitochondrial oxygen consumption. Our data provide a biophysical explanation for how indole may link the metabolism of bacterial and eukaryotic cells.  相似文献   

13.
The aggregation of macrocyclic oligocholates with introverted hydrophilic groups and aromatic side chains was studied by fluorescence spectroscopy and liposome leakage assays. Comparison between the solution and the membrane phase afforded insight into the solvophobically driven aggregation. The macrocycles stacked over one another in lipid membranes to form transmembrane nanopores, driven by a strong tendency of the water molecules in the interior of the amphiphilic macrocycles to aggregate in a nonpolar environment. The aromatic side chains provided spectroscopic signatures for stacking, as well as additional driving force for the aggregation. Smaller, more rigid macrocycles stacked better than larger, more flexible ones because the cholate building blocks in the latter could rotate outward and diminish the conformation needed for the water-templated hydrophobic stacking. The acceptor-acceptor interactions among naphthalenediimide (NDI) groups were more effective than the pyrene-NDI donor-acceptor interactions in promoting the transmembrane pore formation of the oligocholate macrocycles.  相似文献   

14.
Mixed anionic liposomes consisting of dihexadecyl phosphate, phosphatidylcholine, and cholesterol were employed as model systems for assessing the ability of a series of functionalized dendrimers, bearing a varying number of guanidinium groups at their surface, to translocate across the liposomal bilayers. At low guanidinium/phosphate molar ratios or when weakly guanidinylated dendrimeric derivatives were employed, the dendrimeric derivative acted as a kind of "molecular glue" leading to a simple adhesion of the liposomes. Liposomal fusion occurred to a certain extent at high guanidinium/phosphate molar ratios or when highly guanidinylated dendrimeric derivatives were employed. Furthermore, translocation of these dendrimeric derivatives to the liposomal core was observed for low to medium guanidinylation and at low guanidinium/phosphate molar ratios which was, however, enhanced when the lipid bilayer was in its fluid liquid-crystalline phase. Thus, an optimum balance is required between the binding strength of guanidinium with the phosphate groups and the degree of hydrophilicity of the guanidinylated dendrimers for the transport of the latter to the liposomal core to occur.  相似文献   

15.
Cyclo‐oligo‐(1→6)‐β‐D ‐glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion‐transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion‐transport activity increased from di‐ to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion‐transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion‐selectivity sequence: Cl?>Br?>I?. From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed.  相似文献   

16.
Complexation of amino acids in both their zwitterionic and Li+ salt forms by macrocycles, and carrier-mediated transport of the Li+ salts through a CH2Cl2 membrane have been investigated: the transport study of four amino acids by a new series of tetrapyrazolic macrocycles with functionalized sidearms shows wide variations of the transport rates depending on both the macrocyclic sidearm and the amino acid structure.  相似文献   

17.
Small‐molecule‐based fluorescent probes have become important tools in biology for sensing and imaging applications. However, the biological applications of many of the fluorescent molecules are hampered by low cellular uptake and high toxicity. In this paper, we show for the first time that the introduction of halogen atoms enhances the cellular uptake of fluorescent molecules and the nature of halogen atoms plays a crucial role in the plasma membrane transport in mammalian cells. The remarkably higher uptake of iodinated compounds compared to that of their chloro or bromo analogues suggests that the strong halogen bonding ability of iodine atoms may play an important role in the membrane transport. This study provides a novel strategy for the transport of fluorescent molecules across the plasma membrane in living cells.  相似文献   

18.
The heat of transport of oxygen across a membrane mediated by hemoglobin (Hb) as a carrier is iuvestigated by the method of irreversible thermodynamics. It is assumed that oxygen combines with hemoglobin molecules to form oxyhemoglobin according to the reaction nO2 + Hb=HbOzn. The oxyhemoglobin molecule HbOzn then migrates to a new position and is reconverted to Hb by releasing oxygen. It is shown that the heat of transport of oxygen consists of two contributions; one due to the reaction and the other from thermal diffusion of individual species present. Total oxygen flux across the membrane is also calculated in terms of temperature and the chemical potential difference of oxygen across the membrane. The use of the heat of transport as a measure of the efficiency of the heat pump for the carrier-mediated transport process is investigated.  相似文献   

19.
Proton transport via dynamic molecules is ubiquitous in chemistry and biology. However, its use as a switching mechanism for properties in functional molecular assemblies is far less common. In this study, we demonstrate how an intra‐carboxyl proton shuttle can be generated in a molecular assembly akin to a rack‐and‐pinion cascade via a thermally induced single‐crystal‐to‐single‐crystal phase transition. In a triply interpenetrated supramolecular organic framework (SOF), a 4,4′‐azopyridine (azpy) molecule connects to two biphenyl‐3,3′,5,5′‐tetracarboxylic acid (H4BPTC) molecules to form a functional molecular system with switchable mechanical properties. A temperature change reversibly triggers a molecular movement akin to a rack‐and‐pinion cascade, which mainly involves 1) an intra‐carboxyl proton shuttle coupled with tilting of the azo molecules and azo pedal motion and 2) H4BPTC translation. Moreover, both the molecular motions are collective, and being propagated across the entire framework, leading to a macroscopic crystal expansion and contraction.  相似文献   

20.
Amphotericin B (AmB) is an antifungal antibiotic which, despite the severe side effects, is still used for the treatment of systemic fungal infections. Herein we studied the influence of pH upon the selectivity and the transport properties of AmB channels inserted in reconstituted, ergosterol-containing zwitterionic lipid membranes. Our electrophysiology experiments carried out on single and multiple AmB channels prove that at pH 2.8 these channels are anion selective, whereas at neutral and alkaline pH's (pH 7 and pH 11) they become cation selective. We attribute this to the pH-dependent ionization state of the carboxyl and amino groups present at the mouth of AmB molecules. Surprisingly, our data reveal that the single-molecule ionic conductance of AmB channels varies in a non-monotonic fashion with pH changes, which we attribute to the pH-dependent variation of the surface and dipole membrane potential. We demonstrate that when added only from one side of the membrane, in symmetrical salt solutions across the membrane and low pH values, AmB channels display a strong rectifying behavior, and their insertion is strongly favored when positive potentials are present on the side of their addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号