首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-defined polymer brushes and block copolymer brushes consisting of 2-methacryloyloxyethyl phosphorylcholine (MPC) and glycidyl methacrylate (GMA) were prepared by surface-initiated atom transfer radical polymerization (ATRP). The polymer brushes were used for the immobilization of antibody fragments in a defined orientation. Pyridyl disulfide moieties were introduced to the polymer brushes via a reaction of epoxy groups in GMA units. Fab’ fragments were then immobilized onto these surfaces via a thiol-disulfide interchange reaction and the reactivity of antibodies with antigens was investigated. Antigen/antibody binding on the polymer brushes was more preferable than that on epoxysilane films as a control surface. Furthermore, the activity of the antibodies immobilized on the block copolymer brushes having biocompatible PMPC was greater than that on other surfaces that did not have PMPC in their structures.  相似文献   

2.
The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.  相似文献   

3.
We present the synthesis of reactive polymer brushes prepared by surface reversible addition–fragmentation chain transfer polymerization of pentafluorophenyl acrylate. The reactive ester moieties can be used to functionalize the polymer brush film with virtually any functionality by simple post‐polymerization modification with amines. Dithiobenzoic acid benzyl‐(4‐ethyltrimethoxylsilyl) ester was used as the surface chain transfer agent (S‐CTA) and the anchoring group onto the silicon substrates. Reactive polymer brushes with adjustable molecular weight, high grafting density, and conformal coverage through the grafting‐from approach were obtained. Subsequently, the reactive polymer brushes were converted with amino‐spiropyrans resulting in reversible light‐responsive polymer brush films. The wetting behavior could be altered by irradiation with ultraviolet (UV) or visible light. Furthermore, a patterned surface of polymer brushes was obtained using a lithography technique. UV irradiation of the S‐CTA‐modified substrates leads to a selective degradation of S‐CTA in the exposed areas and gives patterned activated polymer brushes after a subsequent RAFT polymerization step. Conversion of the patterned polymer brushes with 5‐((2‐aminoethyl)amino)naphthalene‐1‐sulfonic acid resulted in patterned fluorescent polymer brush films. The utilization of reactive polymer brushes offers an easy approach in the fabrication of highly functional brushes, even for functionalities whose introduction is limited by other strategies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Linear, branched, and arborescent fluoropolymer-Si hybrids were prepared via surface-initiated atom transfer radical polymerization (ATRP) from the 4-vinylbenzyl chloride (VBC) inimer and ClSO(3)H-modified VBC that were immobilized on hydrogen-terminated Si(100), or Si-H, surfaces. The simple approach of UV-induced coupling of VBC with the Si-H surface provided a stable, Si-C bonded monolayer of "monofunctional" ATRP initiators (the Si-VBC surface). The aromatic rings of the Si-VBC surface were then sulfonated by ClSO(3)H to introduce sulfonyl chloride (-SO(2)Cl) groups and to give rise to a monolayer of "bifunctional" ATRP initiators. Kinetics study indicated that the chain growth of poly(pentafluorostyrene) from the functionalized silicon surfaces was consistent with a "controlled" or "living" process. The chemical composition and functionality of the silicon surface were tailored by the well-defined linear and branched fluoropolymer brushes. Atomic force microscopy images revealed that the surface-initiated ATRP of pentafluorostyrene (PFS) had proceeded uniformly on the Si-VBC surface to give rise to a dense and molecularly flat surface coverage of the linear brushes. The uniformity of surfaces with branched brushes was controlled by varying the feed ratio of the monomer and inimer (VBC in the present case). The living chain ends on the functionalized silicon surfaces were used as the macroinitiators for the synthesis of diblock copolymer brushes, consisting of the PFS and methyl methacrylate polymer blocks.  相似文献   

5.
Controlled grafting of well-defined epoxide polymer brushes on the hydrogen-terminated Si(100) substrates (Si-H substrates) was carried out via the surface-initiated atom-transfer radical polymerization (ATRP) at room temperature. Thus, glycidyl methacrylate (GMA) polymer brushes were prepared by ATRP from the alpha-bromoester functionalized Si-H surface. Kinetic studies revealed a linear increase in GMA polymer (PGMA) film thickness with reaction time, indicating that chain growth from the surface was a controlled "living" process. The graft polymerization proceeded more rapidly in the dimethylformamide/water (DMF/H(2)O) mixed solvent medium than in DMF, leading to much thicker PGMA growth on the silicon surface in the former medium. The chemical composition of the GMA graft-polymerized silicon (Si-g-PGMA) surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The fact that the epoxide functional groups of the grafted PGMA were preserved quantitatively was revealed in the reaction with ethylenediamine. The "living" character of the PGMA chain end was further ascertained by the subsequent growth of a poly(pentafluorostyrene) (PFS) block from the Si-g-PGMA surface, using the PGMA brushes as the macroinitiators.  相似文献   

6.
The nitroxide-mediated polymerization of styrenic monomers containing oligo(ethylene glycol) (OEGn) moieties was chosen for the preparation of biocompatible polymer brushes tethered to silicon oxide surfaces due to the broad range of monomer structures available and the use of a nonmetallic initiator. These surfaces were characterized by near-edge X-ray absorption fine structure and water contact angle measurements. The biocompatibility of these grown polymer brushes was studied and compared with deposited assemblies of surface-bound OEGn-terminated silanes with selected chain lengths. Grown polymer brushes with short OEGn side chains suppressed protein adsorption significantly more than the deposited assemblies of short OEGn chains, and this was attributed to higher surface coverage by the brushes. Cell adhesion studies confirmed that OEGn-containing polymer brushes are particularly effective in preventing nonspecific adhesion. Studies of protein adsorption and cell localization carried out with specific ligands on surfaces patterned demonstrated the potential of these surface-tethered polymer brushes for the formation of micro- and nanoscale devices.  相似文献   

7.
We report a simple strategy for the grafting of poly(methacrylic acid) [poly(MAA)] brushes from silicon substrate by surface‐initiated RAFT polymerization and the subsequent coupling of BODIPY to these brushes to render them fluorescent. The poly(MAA) brushes were first generated by functionalization of hydrogen‐terminated silicon substrate with methyl‐10‐undecenoate which both leads to the formation of an organic layer covalently linked to the surface via Si? C bonds without detectable reaction of the carboxylate groups and couples to the polymerization initiator, followed by surface‐initiated RAFT polymerization of tert‐butyl methacrylate from these substrate‐bound initiator centers, and finally conversion of tert‐butyl groups to carboxylic acid groups. The poly(MAA) brushes were then made fluorescent by grafting a BODIPY derivative via an ester linkage. The stability of the BODIPY‐based fluorescent polymer brushes in buffer solutions at pH 6.0 to 12.0 with added salt was investigated by ellipsometry, fluorescence microscopy, grazing angle‐Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy. The results of these measurements indicated that the organic molecule‐initiator bond (ester linkage) is unstable and can be hydrolyzed resulting in detaching of the immobilized polymer from the silicon substrate. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3586–3596  相似文献   

8.
For site-specific dense immobilization of antibodies on a solid support, we prepared phosphorylcholine copolymer brushes on silicone nanofilaments. The nanofilaments were prepared on a silicon wafer by treatment with trichloromethylsilane (MeSiCl 3). To generate Si-OH groups on the nanofilaments, O 2 plasma was irradiated on the surface. Initiators for atom transfer radical polymerization (ATRP) were then coupled on the filaments. Phosphorylcholine copolymer brushes were prepared by a "grafting from" process, and pyridyl disulfide groups were introduced into the polymer chains. F(ab') fragments were then specifically immobilized onto these surfaces via a thiol-disulfide interchange reaction. The amount of antibodies immobilized on the nanofilament-supported copolymer brushes was approximately 65 times greater than that on smooth wafer-supported copolymer brushes.  相似文献   

9.
Surface-initiated atom-transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate (PEGMA) was carried out on the hydrogen-terminated Si(100) substrates with surface-tethered alpha-bromoester initiator. Kinetic studies confirmed an approximately linear increase in polymer film thickness with reaction time, indicating that chain growth from the surface was a controlled "living" process. The "living" character of the surface-grafted PEGMA chains was further ascertained by the subsequent extension of these graft chains, and thus the graft layer. Well-defined polymer brushes of near 100 nm in thickness were grafted on the Si(100) surface in 8 h under ambient temperature in an aqueous medium. The hydroxyl end groups of the poly(ethylene glycol) (PEG) side chains of the grafted PEGMA polymer were derivatized into various functional groups, including chloride, amine, aldehyde, and carboxylic acid groups. The surface-functionalized silicon substrates were characterized by reflectance FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). Covalent attachment and derivatization of the well-defined PEGMA polymer brushes can broaden considerably the functionality of single-crystal silicon surfaces.  相似文献   

10.
A simple method for preparing cationic poly[(ar‐vinylbenzyl)trimethylammonium chloride)] [poly(VBTAC)] brushes was used by combined technology of “click chemistry” and reversible addition‐fragmentation chain transfer (RAFT) polymerization. Initially, silicon surfaces were modified with RAFT chain transfer agent by using a click reaction involving an azide‐modified silicon wafer and alkyne‐terminated 4‐cyanopentanoic acid dithiobenzoate (CPAD). A series of poly(VBTAC) brushes on silicon surface with different molecular weights, thicknesses, and grafting densities were then synthesized by RAFT‐mediated polymerization from the surface immobilized CPAD. The immobilization of CPAD on the silicon wafer and the subsequent polymer formation were characterized by X‐ray photoelectron spectroscopy, water contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and ellipsometry analysis. The addition of free CPAD was required for the formation of well‐defined polymer brushes, which subsequently resulted in the presence of free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. In addition, by varying the polymerization time, we were able to obtain poly(VBTAC) brushes with grafting density up to 0.78 chains/nm2 with homogeneous distributions of apparent needle‐like structures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Novel types of dual‐functional surface‐attached polymer brushes were developed by interface‐mediated reversible addition‐fragmentation chain transfer (RAFT) polymerization of 6‐azidohexylmethacrylate using the surface‐immobilized RAFT agent and the free initiator. The interface‐mediated RAFT polymerization produced silicon substrate coated with dual‐functional (azido groups from monomer and carboxylic acid groups from RAFT agent) poly(6‐azidohexylmethacrylate) [poly (AHMA)] with a grafting density as high as 0.59 chains/nm2. Dual‐functional polymer brushes can represent an attractive chemical platform to deliberately introduce other molecular units at specific sites. The azido groups of the poly(AHMA) brushes can be modified with alkyl groups via click reaction, known for their DNA hybridization, while the carboxylic acid end groups can be reacted with amine groups via amide reaction, known for their antifouling properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1696–1706  相似文献   

12.
A robust and straightforward approach is introduced to synthesize inorganic nanoparticles chemically grafted with a zwitterionic poly(2‐methacryroyloxyethylphosphorylcholine) (PMPC) thin layers. The synthesis method is based on the surface‐mediated seeded polymerization. In order to observe how the polymer chain architectures affect colloidal interactions, the zinc oxide nanoparticles are grafted with linear brushes and with a thin hydrogel layer, respectively. The thickness of PMPC shell layers spans a few nanometers. The studies on suspension rheology for the nanoparticles show that the nanoparticles with PMPC brushes show the stronger repulsive force than those with the PMPC gel shell due to the entropic stabilization. When the shear force is applied to the Pickering emulsion produced by assembly of the nanoparticles, it is noticeable that the presence of PMPC brushes on the particles rather enhances the drop‐to‐drop attraction, which presumably stems from the entanglement of polymer chains between the contacted interfacial planes of the emulsion droplets during shearing.

  相似文献   


13.
In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.  相似文献   

14.
Patterned poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated on oxidized silicon wafers by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide from a micropatterned initiator. The patterned surface initiator was prepared by microcontact-printing octadecyltrichlorosilane and backfilling with 3-(aminopropyl)triethoxysilane followed by amidization with 2-bromo-2-methylpropionic acid. XPS and FTIR confirmed the chemical structure of the surface initiator and the PNIPAAm brushes. Surface analysis techniques, including ellipsometry, contact angle goniometry, and X-ray reflectometry (XRR), were used to characterize the thickness, roughness, hydrophilicity, and density of the polymer brushes. Tapping-mode AFM imaging confirmed the successful patterning of the PNIPAAm brushes on the oxidized silicon substrates. Variable temperature ellipsometry indicated that the lower critical solution temperature of the hydrated PNIPAAm brush was broad, occurring over the range of 20-35 degrees C. A solvatochromic fluorophore, 6-propionyl-2-dimethylaminonaphthalene (Prodan), in the PNIPAAm brush layers yielded a very similar emission to that in DMF, which can be attributed to the similarity of their chemical structures. Fluorescence microscopy further proved the successful patterning of the polymer brushes and suggested that the Prodan is localized in the patterned PNIPAAm brushes and excluded from the surrounding octadecyltrichlorosilane regions.  相似文献   

15.
The surface of nanopores in colloidal films, assembled from 205 nm silica spheres, was modified with poly(N-isopropylacrylamide), PNIPAAM, brushes using surface-initiated ATRP. The polymer thickness inside nanopores was controlled by the polymerization time. The diffusion through PNIPAAM-modified colloidal films was measured using cyclic voltammetry and studied as a function of temperature and polymer brush thickness. Nanopores modified with a thin PNIPAAM brush exhibited a positive gating behavior, where diffusion rates increased with increasing temperature. Nanopores modified with a thick PNIPAAM layer showed a negative gating behavior where diffusion rates decreased with increasing temperature. The observed temperature response is consistent with two transport mechanisms, one in which molecules diffuse through the nanopores whose volume increases with increasing temperature as the PNIPAAM brush collapses onto the nanopore surface (positive gating) and the second one where molecules diffuse through the porous PNIPAAM that fills the entire nanopore opening and collapses onto itself, becoming hydrophobic and impermeable (negative gating).  相似文献   

16.
Polymer brushes were prepared by using the reversible addition fragmentation chain transfer (RAFT) technique. The silicon substrates (Si (111) surface) were modified with ethyl xanthate groups which were introduced by the treatment of Si (111) surface with sodium ethyl xanthate. The polymer brushes were then prepared under RAFT conditions from the Si (111) wafer. Its “living” characteristics were determined by a series of characterizations including gel permeation chromatography (GPC), ellipsometry, and contact angle measurements. The results showed a well‐defined graft layer consisting of polymer brushes with low‐polydispersity could be prepared directly on Si (111)‐X surface (where X represents an ethyl xanthate groups). The structure of the polymer brushes was characterized and confirmed with the surface sensitive techniques such as X‐ray photoelectron spectroscopy (XPS) and scanning probe microscopy (SPM). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The surface wettabilities of polymer brushes with hydrophobic and hydrophilic functional groups were discussed on the basis of conventional static and dynamic contact angle measurements of water and hexadecane in air and captive bubble measurements in water. Various types of high-density polymer brushes with nonionic and ionic functional groups were prepared on a silicon wafer by surface-initiated atom-transfer radical polymerization. The surface free energies of the brushes were estimated by Owens-Wendt equation using the contact angles of various probe liquids with different polarities. The decrease in the water contact angle corresponded to the polarity of fluoroalkyl, hydroxy, ethylene oxide, amino, carboxylic acid, ammonium salt, sulfonate, carboxybetaine, sulfobetaine, and phosphobetaine functional groups. The poly(2-perfluorooctylethyl acrylate) brush had a low surface free energy of approximately 8.7 mN/m, but the polyelectrolyte brushes revealed much higher surface free energies of 70-74 mN/m, close to the value for water. Polyelectrolyte brushes repelled both air bubbles and hexadecane in water. Even when the silicone oil was spread on the polyelectrolyte brush surfaces in air, once they were immersed in water, the oil quickly rolled up and detached from the brush surface. The oil detachment behavior observed on the superhydrophilic polyelectrolyte brush in water was explained by the low adhesion force between the brush and the oil, which could contribute to its excellent antifouling and self-cleaning properties.  相似文献   

18.
The dimensions and intermolecular interactions of a surface-grafted and unbound free polyampholyte, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), were estimated in aqueous solutions with various ionic strengths. Free linear PMPC was synthesized by atom-transfer radical polymerization (ATRP), and static light scattering (SLS) and dynamic light scattering (DLS) were carried out for the PMPC solutions with various concentrations of NaCl, c s. The hydrodynamic radius R H and the second virial coefficient A 2 of PMPC were independent of c s (0-0.5 M), though both R H and A 2 of polyampholytes usually strongly depend on the ionic strength. PMPC-immobilized silica nanoparticles (PMPC-SiNP) were also synthesized by surface-initiated ATRP, and DLS was carried out as for the solutions of linear PMPC to investigate the dependence of the dimensions of PMPC immobilized on a solid surface on the ionic strength. The molecular weight and surface density of PMPC immobilized on SiNP were estimated from the results obtained by GPC, NMR, and thermogravimetric analysis. The independence of R H of PMPC-SiNP was also observed, but its magnitude was larger than that of linear PMPC, although the molecular weight of PMPC immobilized on SiNP was smaller than that of linear PMPC. The larger dimension of PMPC immobilized on SiNP was explained by the excluded volume effect between the immobilized polymer chains.  相似文献   

19.
A new procedure is described for surface grafting polymer brushes by step-growth polymerization from initiator-embedded polymeric thin films and micron- and nanometer-scale patterns. An imprint lithographic process, nanocontact molding, was used to prepare thin patterned cross-linked polyacrylate network films on silicon wafers that incorporated 4-bromostyrene in the networks. These networks present reactive 4-bromophenyl functionality at the surface that act as attachment sites for the subsequent Ni(0)- mediated step-growth condensation polymerization of 2,7-dibromo-9,9-dihexylfluorene The step-growth polymerization medium consisted of 2,7-dibromo-9,9-dihexylfluorene, Ni(0)-catalyst, and bipyridine in a toluene/dimethylformamide solvent mixture. The resulting growth of polydihexylfluorene brushes from the patterned surface was monitored by contact angle, optical spectrometry, surface profilometry and AFM. Brush growth was conducted from patterned features ranging from 100 microm to 100 nm in width and 50 nm in height. The optical and fluorescence behavior of the polyfluorene brushes was similar to that of thin polyfluorene films made by spin coating.  相似文献   

20.
Poly(PEGMA) homopolymer brushes were developed by atom transfer radical polymerization (ATRP) on the initiator-modified silicon surface (Si-initiator). Through covalent binding, protein immobilization on the poly(PEGMA) films was enabled by further NHS-ester functionalization of the poly(PEGMA) chain ends. The formation of polymer brushes was confirmed by assessing the surface composition (XPS) and morphology (atomic force microscopy (AFM), scanning electronic microscopy (SEM)) of the modified silicon wafer. The binding performance of the NHS-ester functionalized surfaces with two proteins horseradish peroxidase (HRP) and chicken immunoglobulin (IgG) was monitored by direct observation. These results suggest that this method which incorporates the properties of polymer brush onto the binding surfaces may be a good strategy suitable for covalent protein immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号