首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abasic lesions, which are formed endogenously and as a consequence of exogenous agents, are lethal and mutagenic. Hydrogen atom abstraction from C2' in DNA under aerobic conditions produces an oxidized abasic lesion (C2-AP), along with other forms of DNA damage. The effects of C2-AP on DNA structure and function are not well understood. A method for the solid-phase synthesis of oligonucleotides containing C2-AP lesions is reported. The lesion is released via periodate oxidation of a triol containing a vicinal diol. The triol is introduced via a phosphoramidite that is compatible with standard oligonucleotide synthesis and deprotection conditions. UV-melting studies indicate that the C2-AP lesion has a comparable effect on the thermal stability of duplex DNA as other abasic lesions. The C2-AP lesion is rapidly cleaved by piperidine at 90 degrees C. However, cleavage by NaOH (0.1 M, 37 degrees C) shows that C2-AP is considerably less labile (t(1/2) = 3.3 +/- 0.2 h) than other abasic lesions.  相似文献   

2.
UV‐light irradiation induces the formation of highly mutagenic lesions in DNA, such as cis‐syn cyclobutane pyrimidine dimers (CPD photoproducts), pyrimidine(6‐4)pyrimidone photoproducts ((6‐4) photoproducts) and their Dewar valence isomers ((Dew) photoproducts). Here we describe the synthesis of defined DNA strands containing these lesions by direct irradiation. We show that all lesions are efficiently repaired except for the T(Dew)T lesion, which cannot be cleaved by the repair enzyme under our conditions. A crystal structure of a T(6‐4)C lesion containing DNA duplex in complex with the (6‐4) photolyase from Drosophila melanogaster provides insight into the molecular recognition event of a cytosine derived photolesion for the first time. In light of the previously postulated repair mechanism, which involves rearrangement of the (6‐4) lesions into strained four‐membered ring repair intermediates, it is surprising that the not rearranged T(6‐4)C lesion is observed in the active site. The structure, therefore, provides additional support for the newly postulated repair mechanism that avoids this rearrangement step and argues for a direct electron injection into the lesion as the first step of the repair reaction performed by (6‐4) DNA photolyases.  相似文献   

3.
UV irradiation of cellular DNA leads to the formation of a number of defined mutagenic DNA lesions. Here we report the discovery of new intrastrand C(4-8)G and G(8-4)C cross-link lesions in which the C(4) amino group of the cytosine base is covalently linked to the C(8) position of an adjacent dG base. The structure of the novel lesions was clarified by HPLC-MS/MS data for UV-irradiated DNA in combination with chemical synthesis and direct comparison of the synthetic material with irradiated DNA. We also report the ability to generate the lesions directly in DNA with the help of a photoactive precursor that was site-specifically incorporated into DNA. This should enable detailed chemical and biochemical investigations of these lesions.  相似文献   

4.
The predominant product of aberrant DNA methylation is the genotoxic lesion N7-methyl-2'-deoxyguanosine (m7dG). M7dG is recognized and excised by lesion-specific DNA glycosylases, namely AlkA in E. coli and Aag in humans. Structural studies of m7dG recognition and catalysis by these enzymes have been hampered due to a lack of efficient means by which to incorporate the chemically labile m7dG moiety site-specifically into DNA on a preparative scale. Here we report a solution to this problem. We stabilized the lesion toward acid-catalyzed and glycosylase-catalyzed depurination by 2'-fluorination and toward base-catalyzed degradation using mild, nonaqueous conditions in the DNA deprotection reaction. Duplex DNA containing 2'-fluoro-m7dG (Fm7dG) cocrystallized with AlkA as a host-guest complex in which the lesion-containing segment of DNA was nearly devoid of protein contacts, thus enabling the first direct visualization of the N7-methylguanine lesion nucleobase in DNA. The structure reveals that the base-pairing mode of Fm7dG:C is nearly identical to that of G:C, and Fm7dG does not induce any apparent structural disturbance of the duplex structure. These observations suggest that AlkA and Aag must perform a structurally invasive interrogation of DNA in order to detect the presence of intrahelical m7dG lesions.  相似文献   

5.
Here we present the first structure of a very advanced intermediate in the lesion-extrusion pathway of a DNA glycosylase, human 8-oxoguanine DNA glycosylase (hOGG1), and a substrate DNA containing a mutagenic lesion, 8-oxoguanine (oxoG). The structure was obtained by irradiation and flash-freezing of a disulfide-cross-linked (DXLed) complex of hOgg1 bound to DNA containing a novel photocaged derivative of oxoG. The X-ray structure reveals that, upon irradiation, the oxoG lesion has transited from the exosite to the active site pocket, but has not undergone cleavage by the enzyme. Furthermore, all but one of the specificity-determining interactions between the lesion and the enzyme are unformed in the flashed complex (FC), because active site functionality and elements of the DNA backbone are mispositioned. This structure thus provides a first glimpse into the structure of a very late-stage intermediate in the lesion-extrusion pathway--the latest observed to date for any glycosylase--in which the oxoG has undergone insertion into the enzyme active site following photodeprotection, but the enzyme and DNA have not yet completed the slower process of adjusting to the presence of the lesion in the active site.  相似文献   

6.
The 7,8-dihydroadenin-8-one is one of the base derivatives formed by the action of ionizing radiation upon DNA. In order in investigate the mutagenic effects and the repair of DNA lesions induced by gamma rays, the synthesis of oligonucleotides bearing this damage has been performed by the phosphoramidite methodology. The preparation of the corresponding protected mononucleotide 6 (see Scheme) and its insertion into a DNA fragment are described. The modified oligonucleotide was purified by HPLC, characterized by DNA sequencing, enzymatic hydrolysis, and FAB mass spectrometry. In the experimental conditions used herein, no basic or acidic degradation was observed. In the DNA chain, the lesion is stable on piperidine heating under the usual DNA sequencing conditions.  相似文献   

7.
Tyrosine kinase receptors are one of the main targets in cancer therapy. They play an essential role in the modulation of growth factor signaling and thereby inducing cell proliferation and growth. Tyrosine kinase inhibitors such as neratinib bind to EGFR and HER2 receptors and exhibit antitumor activity. However, little is known about their detailed cellular uptake and metabolism. Here, we report for the first time the intracellular spatial distribution and metabolism of neratinib in different cancer cells using label‐free Raman imaging. Two new neratinib metabolites were detected and fluorescence imaging of the same cells indicate that neratinib accumulates in lysosomes. The results also suggest that both EGFR and HER2 follow the classical endosome lysosomal pathway for degradation. A combination of Raman microscopy, DFT calculations, and LC‐MS was used to identify the chemical structure of neratinib metabolites. These results show the potential of Raman microscopy to study drug pharmacokinetics.  相似文献   

8.
Malondialdehyde (MDA), a known mutagen and suspected carcinogen, is a product of lipid peroxidation and byproduct of eicosanoid biosynthesis. MDA can react with DNA to generate potentially mutagenic adducts on adenine, cytosine, and particularly guanine. In addition, repair-dependent frame shift mutations in a GCGCGC region of Salmonella typhimurium hisD3052 have been attributed to formation of interstrand cross-links (Mukai, F. H. and Goldstein, B. D. Science 1976, 191, 868--869). The cross-linked species is unstable and has never been characterized but has been postulated to be a bis-imino linkage between N(2) positions of guanines. An analogous linkage has now been investigated as a stable surrogate using the self-complementary oligodeoxynucleotide sequence 5'-d(AGGCG*CCT)(2,) in which G* represents guanines linked via a trimethylene chain between N(2) positions. The solution structure, obtained by NMR spectroscopy and molecular dynamics using a simulated annealing protocol, revealed the cross-link only minimally distorts duplex structure in the region of the cross-link. The tether is accommodated by partially unwinding the duplex at the lesion site to produce a bulge and tipping the guanine residues; the two guanines and the tether attain a nearly planar conformation. This distortion did not result in significant bending of the DNA, a result which was confirmed by gel electrophoresis studies of multimers of a 21-mer duplex containing the cross-link.  相似文献   

9.
In the past few years, there has been an increase in the application of photosensitizers for medical purposes. A good standardized test system for the evaluation of the mutagenic potentials of photosensitizers is therefore an indispensable device. In the standard Ames test, white light itself was proven to be mutagenic and the result influenced by the light source. Lack of a reliable positive control is another problem in many genotoxicity test systems used for the evaluation of mutagenicity of photosensitizers. Based on the validated somatic mutation and recombination test, known as SMART, and using Drosophila melanogaster, we developed the Photo-SMART and demonstrated that methylene blue, known to induce photomutagenicity, can act as a positive control in the presented test system. The SMART scores for the loss of heterozygosity caused predominantly by homologous mitotic recombination. The Photo-SMART can be used to detect photogenotoxicity caused by short-lived photoproducts or by stable photoproducts or both. We demonstrated the Photo-SMART to be a good standardized test system for the evaluation of mutagenic potentials of the photosensitizer 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (TPP). We demonstrated that TPP was mutagenic using the Photo-SMART. For hematoporphyrin, the results of the Photo-SMART indicate the absence of mutagenicity.  相似文献   

10.
11.
Diastereomeric 8,5'-cyclopurine 2'-deoxynucleosides, containing a covalent bond between the deoxyribose and the purine base, represent an important class of DNA damage induced by ionizing radiation. The 8,5'-cyclo-2'-deoxyguanosine lesion (cdG) has been recently reported to be a strong block of replication and highly mutagenic in Escherichia coli. The 8,5'-cyclopurine-2'-deoxyriboses are suspected to play a role in the etiology of neurodegeneration in xeroderma pigmentosum patients. These lesions cannot be repaired by base excision repair, but they are substrates for nucleotide excision repair. The structure of an oligodeoxynucleotide duplex containing a site-specific S-cdG lesion placed opposite dC in the complementary strand was obtained by molecular dynamics calculations restrained by distance and dihedral angle restraints obtained from NMR spectroscopy. The S-cdG deoxyribose exhibited the O4'-exo (west) pseudorotation. Significant perturbations were observed for the β, γ, and χ torsion angles of the S-cdG nucleoside. Watson-Crick base pairing was conserved at the S-cdG·dC pair. However, the O4'-exo pseudorotation of the S-cdG deoxyribose perturbed the helical twist and base pair stacking at the lesion site and the 5'-neighbor dC·dG base pair. Thermodynamic destabilization of the duplex measured by UV melting experiments correlated with base stacking and structural perturbations involving the modified S-cdG·dC and 3'- neighbor dT·dA base pairs. These perturbations may be responsible for both the genotoxicity of this lesion and its ability to be recognized by nucleotide excision repair.  相似文献   

12.
A new class of degradable polymers is obtained from a diene monomer and molecular oxygen as the starting materials via a highly controlled radical copolymerization process. We now report the regiospecific copolymerization of a tetrasubstituted ethylene monomer with oxygen. Theoretical calculations support the highly selective propagations observed during the polymerization. The key steps are the regiospecific reactions of a peroxy radical to diene monomers and an allyl radical to molecular oxygen. The well-controlled molecular structure of the resulting polymer leads to the aldehyde-free degradation products during degradation by various stimuli, such as heating.  相似文献   

13.
Reactive oxygen species (ROS) can damage DNA. Although a number of single nucleobase lesions induced by ROS have been structurally characterized, only a few intrastrand cross-link lesions have been identified and characterized, and all of them involve adjacent thymine and guanine or adenine. In mammalian cells, the cytosines at CpG sites are methylated. On the basis of the similar reactivity of 5-methylcytosine and thymine toward hydroxyl radical and the similar orientation of adjacent thymine guanine (TG) and 5-methylcytosine guanine (mCG) in B-DNA, we predict that the cross-link lesion, which was identified in TG and has a covalent bond formed between the 5-methyl carbon atom of T and the C8 carbon atom of G, should also form at mCG site. Here, we report for the first time the independent generation of 5-(2'-deoxycytidinyl)methyl radical, and our results demonstrate that this radical can give rise to the predicted novel intrastrand cross-link lesion in dinucleoside monophosphates d(mCG) and d(GmC). Furthermore, we show that the cross-link lesion can also form in d(mCG) from gamma irradiation under anaerobic conditions.  相似文献   

14.
Kerssens MM  Matousek P  Rogers K  Stone N 《The Analyst》2010,135(12):3156-3161
A new diagnostic concept based on deep Raman spectroscopy is proposed permitting the non-invasive determination of the level of carbonate substitution in type II calcifications (HAP). The carbonate substitution has shown to be directly associated with the pathology of the surrounding breast tissue and different pathology groups can therefore be separated using specific features in the Raman spectra of the calcifications. This study explores the principle of distinguishing between type II calcifications, found in proliferating lesions, by using the strongest Raman peak from calcium hydroxyapatites (the phosphate peak at 960 cm(-1)) to act as a surrogate marker for carbonate substitution levels. It is believed that carbonate ion substitution leads to a perturbation of the hydroxyapatite lattice which in turn affects the phosphate vibrational modes. By studying calcifications, with known carbonate content, buried in porcine tissue it has been possible to evaluate the feasibility of using the proposed approach to probe the composition of the calcifications in vivo and hence provide pathology specific information non-invasively, in real time. Using the proposed concept we were able to determine the level of carbonate substitutions through soft tissue phantom samples (total thickness of 5.6 mm). As the level of carbonate substitution has been previously correlated with mid-FTIR to the lesion type, i.e. whether benign or invasive or in situ carcinoma, the new findings provide a major step forward towards establishing a new capability for diagnosing benign and malignant lesions in breast tissue in a safe and non-invasive manner in vivo.  相似文献   

15.
BACKGROUND: Detailed analyses of mutational hotspots following DNA damage provide an understanding of oncogene activation and tumor suppressor gene inactivation, and hence provide an insight into the earliest steps in the induction of cancer. A mutational hotspot might be created by preferential lesion formation, decreased lesion repair, or increased misinsertion past the lesion during DNA replication. The respective contribution of these factors might be influenced by the DNA sequence context of the hotspot. RESULTS: As a prelude to addressing the contribution of all possible nearest-neighbor contexts on the replication past O6-methylguanine (m6G) and repair of m6G in vivo, we have devised a mutation frequency (MF) detection strategy on the basis of the properties of type IIs restriction enzymes. We also report a method for constructing site-specific single-stranded viral DNA genomes that should yield identical ligation efficiencies regardless of the lesion or its surrounding sequence context. Using repair-deficient Escherichia coli, we discovered that m6G in three sequence contexts was nearly 100% mutagenic in vivo, showing that the DNA polymerase holoenzyme almost always placed a thymine base opposite m6G during replication. In partially repair-proficient cells, the Ada O6-methylguanine-DNA methyltransferase repair protein was twice as efficient on m6G when a guanine base rather than an adenine base was 5' to the lesion. CONCLUSIONS: The system allows the mutagenic potential of, theoretically, any DNA lesion that exhibits point mutations, in any varied local sequence context, to be rapidly determined. The assay demonstrates low background, high throughput, and does not require phenotypic selection, making it possible to discern the effects of sequence context on the processing of m6G.  相似文献   

16.
The 2,6-diamino-4-hydroxy-5-formamidopyrimidine of 2'-deoxyguanosine (FaPydG) is one of the major DNA lesions found after oxidative stress in cells. To clarify the base pairing and coding potential of this major DNA lesion with the aim to estimate its mutagenic effect, we prepared oligonucleotides containing a cyclopentane based analogue of the DNA lesion (cFaPydG). In addition, oligonucleotides containing the cyclopentane analogue of 2'-deoxyguanosine (cdG), and oligonucleotides containing 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were synthesized. The thermodynamic stability of duplexes containing these building blocks and all canonical counterbases were determined by concentration dependent melting-point measurements (van't Hoff plots). The data reveal that cFaPydG greatly destabilizes a DNA duplex (DeltaDeltaG degrees (298K) approximately 2-4 kcal mol(-1)). The optimal base pairing partner for the cFaPydG lesion is dC. Investigation of duplexes containing dG and cdG shows that the effect of substituting the deoxyribose by a cyclopentane moiety is marginal. The data also provide strong evidence that the FaPydG lesion is unable to form a base pair with dA. Our computational studies indicate that the syn-conformation required for base pairing with dA is energetically unfavorable. This is in contrast to 8-oxodG for which the syn-conformation represents the energetic minimum. Kinetic primer extension studies using S. cerevisiae Pol eta reveal that cFaPydG is replicated in an error-free fashion. dC is inserted 2-3 orders of magnitude more efficiently than dT or dA, showing that FaPydG is a lesion which retains the coding potential of dG. This is also in contrast to 8-oxodG, for which base pairing with dC and dA was established.  相似文献   

17.
Oxidation is one of the common causes of chemical damage of DNA. Among the oxidized nucleobases in DNA, 8-oxoadenine (8-oxoA) and 4,6-diamino-5-formamidoadenine (FaPyA) are two of the most commonly found lesions. Relatively little information has been published so far on these lesions compared to the more mutagenic modified purines like 8-oxoguanine. In this study, we investigate the structure and vibrational spectra of these two lesions using Density Functional Theory relative to the parent compound adenine. In addition, we have incorporated a solvent environment through the Polarizable Continuum Model (PCM), as well as explicit solvent model calculations to test for the best prediction of the vibrational wavenumbers of adenine. We find that, while the explicit solvent model predicts the structure of the lesions better with respect to published X-ray diffraction structures, they do not reproduce the vibrational wavenumbers as accurately. In comparison, PCM predicts the wavenumbers better with less of the typical overestimation seen in the absence of solvent effects. Intriguingly, uniform linear scaling of the 'gas phase' calculations provides the best agreement with published experimental spectra. Finally, we demonstrate that 8-oxoA and FaPyA have unique spectral features compared to adenine by characterizing the differences in their normal modes. We propose the use of their distinct spectra as site-specific Raman probes of systems such as base-specific local probing of a DNA strand and DNA-enzyme active site interactions where the substrate can be used as an in situ probe.  相似文献   

18.
One nanosecond molecular dynamics (MD) simulation was performed for two DNA segments each composed of 30 base pairs. In one DNA segment the native guanines at nucleotides positions 17 and 19 were replaced with two 8-oxoguanines (8-oxoG) (8-oxoG is mutagenic DNA oxo-lesion). The analysis of results was focused on the electrostatic energy that is supposed to be significant factor causing the disruption of DNA base stacking in DNA duplex and may also serve as a signal toward the repair enzyme informing the presence of the lesion. The repulsive interaction between 8-oxoG and the entire DNA molecule was observed, which caused the extrahelical position of 8-oxoG (position 19). The repulsive electrostatic interaction between both 8-oxoG lesions contributed to the flipping out of one 8-oxoG and to the local instability of the lesioned DNA region. The electrostatic potential at the surface of DNA close to the lesions has more negative value than the same region on the native DNA. This electrostatic potential may signal presence of the lesion to the repair enzyme. In the simulation of native DNA segment, no significant structural changes were observed and B-DNA structure was well preserved throughout the MD simulation.  相似文献   

19.
Near-ultraviolet light (UVA: 320-400 nm) constitutes a major part of sunlight UV. It is important to know the effect of UVA on the biological activities of organisms on the earth. We have previously reported that black light induces somatic-cell mutation in Drosophila larvae. To investigate which wavelength of the UVA is responsible for the mutation we have now carried out a series of monochromatic irradiations (310, 320, 330, 340, 360, 380 and 400 nm) on Drosophila larvae, using the large spectrograph of the National Institute for Basic Biology (Okazaki National Research Institutes, Okazaki, Japan). Mutagenic activity was examined by the Drosophila wing-spot test in which we observe mutant wing hair colonies (spots) on the wings of adult flies obtained from the treated larvae. The induction of mutation was highest by irradiation at 310 nm and decreased as the wavelength became longer. Neither the 380 nor the 400 nm light was mutagenic. Excision repair is known to protect cells from UV damage. In the excision-repair-deficient Drosophila, the mutagenic response induced by 310 nm irradiation was 24-fold higher than that of the wild-type (7.2 +/- 1.5 spots/wing/kJ vs 0.3 +/- 0.08 spots/wing/kJ), and at 320 nm the difference of the response was 14-fold (0.21 vs 0.015 +/- 0.005). In the case of irradiation at 330 and 340 nm the difference of the response was only two-fold (at 330 nm, 6.9 +/- 2.9 x 10(-3) vs 3.1 +/- 1.1 x 10(-3) spots/wing/kJ; at 340 nm, 3.5 +/- 0.9 x 10(-3) vs 2.0 +/- 0.7 x 10(-3). These results suggest that the lesion caused in the larvae by 320 nm irradiation may be similar to the damage induced by 310 nm and that the lights of 330 and 340 nm may induce damage different from the lesions induced by shorter-wavelength lights.  相似文献   

20.
One nanosecond molecular dynamics (MD) simulation was performed for two DNA segments each composed of 30 base pairs. In one DNA segment the native guanines at nucleotides positions 17 and 19 were replaced with two 8-oxoguanines (8-oxoG) (8-oxoG is mutagenic DNA oxo-lesion). The analysis of results was focused on the electrostatic energy that is supposed to be significant factor causing the disruption of DNA base stacking in DNA duplex and may also serve as a signal toward the repair enzyme informing the presence of the lesion. The repulsive interaction between 8-oxoG and the entire DNA molecule was observed, which caused the extrahelical position of 8-oxoG (position 19). The repulsive electrostatic interaction between both 8-oxoG lesions contributed to the flipping out of one 8-oxoG and to the local instability of the lesioned DNA region. The electrostatic potential at the surface of DNA close to the lesions has more negative value than the same region on the native DNA. This electrostatic potential may signal presence of the lesion to the repair enzyme. In the simulation of native DNA segment, no significant structural changes were observed and B-DNA structure was well preserved throughout the MD simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号