首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Two isomers of Sm@C(92) and four isomers of Sm@C(94) were isolated from carbon soot obtained by electric arc vaporization of carbon rods doped with Sm(2)O(3). Analysis of the structures by single-crystal X-ray diffraction on cocrystals formed with Ni(II)(octaethylporphyrin) reveals the identities of two of the Sm@C(92) isomers: Sm@C(92)(I), which is the more abundant isomer, is Sm@C(1)(42)-C(92), and Sm@C(92)(II) is Sm@C(s)(24)-C(92). The structure of the most abundant form of the four isomers of Sm@C(94), Sm@C(94)(I), is Sm@C(3v)(134)-C(94), which utilizes the same cage isomer as the previously known Ca@C(3v)(134)-C(94) and Tm@C(3v)(134)-C(94). All of the structurally characterized isomers obey the isolated pentagon rule. While the four Sm@C(90) and five isomers of Sm@C(84) belong to common isomerization maps that allow these isomers to be interconverted through Stone-Wales transformations, Sm@C(1)(42)-C(92) and Sm@C(s)(24)-C(92) are not related to each other by any set of Stone-Wales transformations. UV-vis-NIR spectroscopy and computational studies indicate that Sm@C(1)(42)-C(92) is more stable than Sm@C(s)(24)-C(92) but possesses a smaller HOMO-LUMO gap. While the electronic structures of these endohedrals can be formally described as Sm(2+)@C(2n)(2-), the net charge transferred to the cage is less than two due to some back-donation of electrons from π orbitals of the cage to the metal ion.  相似文献   

2.
Three isomers of Sm@C(82) that are soluble in organic solvents were obtained from the carbon soot produced by vaporization of hollow carbon rods doped with Sm(2)O(3)/graphite powder in an electric arc. These isomers were numbered as Sm@C(82)(I), Sm@C(82)(II), and Sm@C(82)(III) in order of their elution times from HPLC chromatography on a Buckyprep column with toluene as the eluent. The identities of isomers, Sm@C(82)(I) as Sm@C(s)(6)-C(82), Sm@C(82)(II) as Sm@C(3v)(7)-C(82), and Sm@C(82)(III) as Sm@C(2)(5)-C(82), were determined by single-crystal X-ray diffraction on cocrystals formed with Ni(octaethylporphyrin). For endohedral fullerenes like La@C(82), which have three electrons transferred to the cage to produce the M(3+)@(C(82))(3-) electronic distribution, generally only two soluble isomers (e.g., La@C(2v)(9)-C(82) (major) and La@C(s)(6)-C(82) (minor)) are observed. In contrast, with samarium, which generates the M(2+)@(C(82))(2-) electronic distribution, five soluble isomers of Sm@C(82) have been detected, three in this study, the other two in two related prior studies. The structures of the four Sm@C(82) isomers that are currently established are Sm@C(2)(5)-C(82), Sm@C(s)(6)-C(82), Sm@C(3v)(7)-C(82), and Sm@C(2v)(9)-C(82). All of these isomers obey the isolated pentagon rule (IPR) and are sequentially interconvertable through Stone-Wales transformations.  相似文献   

3.
Four isomers with the composition SmC(90) were obtained from carbon soot produced by electric arc vaporization of carbon rods doped with Sm(2)O(3). These were labeled Sm@C(90)(I), Sm@C(90)(II), Sm@C(90)(III), and Sm@C(90)(IV) in order of their elution times during chromatography on a Buckyprep column with toluene as the eluent. Analysis of the structures by single-crystal X-ray diffraction on cocrystals formed with Ni(octaethylporphyrin) reveals the identities of the individual isomers as follows: I, Sm@C(2)(40)-C(90); II, Sm@C(2)(42)-C(90); III, Sm@C(2v)(46)-C(90) and IV, Sm@C(2)(45)-C(90). This is the most extensive series of isomers of any endohedral fullerene to have their individual structures determined by single-crystal X-ray diffraction. The cage structures of these four isomers can be related pairwise to one another in a formal sense through sequential Stone-Wales transformations.  相似文献   

4.
5.
  1. Download : Download full-size image
  相似文献   

6.
Minor isomer comes forward: Minor isomer C(84)(5) has been captured by high temperature trifluoromethylation with CF(3)I and chlorination with VCl(4). The compounds C(84)(CF(3))(16), C(84)Cl(20), and C(84)(5)Cl(32) were investigated by X-ray crystallography providing the first direct proof of the cage connectivity of D(2)-C(84)(5). The D(2)-C(84)(5)Cl(32) molecule (see figure; C grey, Cl green) contains two flattened, pyrene-like substructures on opposite poles of the cage resulting in its drum-like shape.  相似文献   

7.
Although there are 51 568 non-IPR and 24 IPR structures for C84, the egg-shaped endohedral fullerenes Tm3N@C(s)(51 365)-C84 and Gd3N@C(s)(51 365)-C84 utilize the same non-IPR cage structure as found initially for Tb3N@C(s)(51 365)-C84.  相似文献   

8.
Meier MS  Kiegiel J 《Organic letters》2001,3(11):1717-1719
The simple fullerene diols C(60)(OH)(2) and C(70)(OH)(2) were prepared by addition of RuO(4) followed by acid hydrolysis. The 1,2-C(60)(OH)(2) isomer was formed from C(60), and two isomers (1,2 and 5,6) of C(70)(OH)(2) were formed in the RuO(4) hydroxylation of C(70). These compounds are much more soluble in THF and dioxane than the parent fullerenes. More highly hydroxylated materials are formed as well.  相似文献   

9.
The reaction of elemental Se with 1,3-dimethylimidazolium iodide in methanolic K2CO3 yields 1,3-dimethyl-2(3H)-imidazoleselone for which three addition products, two with bromine and one with iodomethane, have been synthesized and for which X-ray crystallographic analysis shows the structure to consist of a selenium-substituted planar heterocyclic ring with bond distances and angles significantly different from those noted for the previously reported sulfur analog [1,3-dimethyl-2(3H)-imidazolethione, dmit]. Crystal data: C5H8N2Se, space group C mcm, M = 175.03, a = 8.625(3), b = 11.447(6), c = 6.900(4) Å, V = 681.24 Å3, Z = 4, Dc = 1.707 g cm−3, D0 = 1.68 g cm−3, λ = 0.71073 Å (Mo-Kα), μ = 5.35 mm−1, R = 0.034, and Rw = 0.031.  相似文献   

10.
11.
The clusters Ru(3)(CO)(10)L(2), where L = PMe(2)Ph or PPh(3), are shown by NMR spectroscopy to exist in solution in at least three isomeric forms, one with both phosphines in the equatorial plane on the same ruthenium center and the others with phosphines in the equatorial plane on different ruthenium centers. Isomer interconversion for Ru(3)(CO)(10)(PMe(2)Ph)(2) is highly solvent dependent, with DeltaH decreasing and DeltaS becoming more negative as the polarity of the solvent increases. The stabilities of the isomers and their rates of interconversion depend on the phosphine ligand. A mechanism that accounts for isomer interchange involving Ru-Ru bond heterolysis is suggested. The products of the reaction of Ru(3)(CO)(10)L(2) with hydrogen have been monitored by NMR spectroscopy via normal and para hydrogen-enhanced methods. Two hydrogen addition products are observed with each containing one bridging and one terminal hydride ligand. EXSY spectroscopy reveals that both intra- and interisomer hydride exchange occurs on the NMR time scale. On the basis of the evidence available, mechanisms for hydride interchange involving Ru-Ru bond heterolysis and CO loss are proposed.  相似文献   

12.
Alkylsulphinylpyridine ligands containing three potential donor centres: N, S and O atoms and two complexes of general formula trans-[PtCl2(PEt3)PySOR)] (R = Me and n Pr) were prepared and characterized by elemental analysis, i.r. spectroscopy, 1H- and 31P-n.m.r. and X-ray crystallography. The ambidentate ligands act in both situations as monodentate ligands, bonded to the metal exclusively through the nitrogen atom. The crystal structures revealed the occurrence of discrete molecules and, in both complexes, the Pt atoms are coordinated in square planar arrangements by two chloride ions, in a trans configuration, by the pyridine nitrogen atom, and by the phosphine P atom. The oxygen atoms do not take part in the complexation scheme.  相似文献   

13.
The reaction of the anticancer active compound [Rh(2)(mu-O(2)CCH(3))(2)(bpy)(2)(CH(3)CN)(2)][BF(4)](2) (1) (bpy = 2,2'-bipyridine) with NaC(6)H(5)S under anaerobic conditions yields Rh(2)(eta(1)-C(6)H(5)S)(2)(mu-C(6)H(5)S)(2)(bpy)(2).CH(3)OH (2), which was characterized by UV-visible, IR, and (1)H NMR spectroscopies as well as single-crystal X-ray crystallography. Compound 2 crystallizes as dark red platelets in the monoclinic space group C2/c with cell parameters a = 20.398(4) A, b = 11.861(2) A, c = 17.417(4) A, beta = 108.98 degrees, V = 3984.9(14) A(3), Z = 4. The main structural features are the presence of a [Rh(2)](4+) core with a Rh-Rh distance of 2.549(2) A bridged by two benzene thiolate ligands in a butterfly-type arrangement. The axial positions of the [Rh(2)](4+) core are occupied by two terminal benzene thiolates. Cyclic voltammetric studies of 2 reveal that the compound exhibits an irreversible oxidation at +0.046 V in CH(3)CN, which is in accord with the fact that the compound readily oxidizes in the presence of O(2). The fact that this unusual dirhodium(II/II) thiolate compound is formed under these conditions is an important first step in understanding the metabolism of dirhodium anticancer active compounds with thiol-containing peptides and proteins.  相似文献   

14.
Two isomers of C70(CF3)12 have been isolated from a mixture obtained by trifluoromethylation of C70 with CF3I; their molecular structures determined by X-ray crystallography are in good agreement with the results of theoretical DFT calculations for the most stable C70(CF3)12 isomers.  相似文献   

15.
The compounds [Co(2)(CO)(8)] and nido-7,8-C(2)B(9)H(13) react in CH(2)Cl(2) to give a complex mixture of products consisting primarily of two isomers of the dicobalt species [Co(2)(CO)(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (1), together with small amounts of a mononuclear cobalt compound [Co(CO)(2)(eta(5)-10-CO-7,8-C(2)B(9)H(10))] (5) and a charge-compensated carborane nido-9-CO-7,8-C(2)B(9)H(11) (6). In solution, isomers 1a and 1b slowly equilibrate. However, column chromatography allows a clean separation of 1a from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a nido-C(2)B(9)H(11) cage framework. The two Co(CO)(eta(5)-7,8-C(2)B(9)H(11)) units are linked by a Co-Co bond [2.503(2) ?], which is supported by two three-center two-electron B-H right harpoon-up Co bonds. The latter employ B-H vertices in each cage which lie in alpha-sites with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of PMe(2)Ph to a CH(2)Cl(2) solution of a mixture of the isomers 1, enriched in 1b, gave isomers of formulation [Co(2)(CO)(PMe(2)Ph)(eta(5)-7,8-C(2)B(9)H(11))(2)] (2). Crystals of one isomer were suitable for X-ray diffraction. The molecule 2a has a structure similar to that of 1a but differs in that whereas one B-H right harpoon-up Co bridge involves a boron atom in an alpha-site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the beta-site. Reaction between 1b and an excess of PMe(2)Ph in CH(2)Cl(2) gave the complex [CoCl(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))] (3), the structure of which was established by X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co(II) species of formulation [Co(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))]. Addition of 2 molar equiv of CNBu(t) to solutions of either 1a or 1b gave a mixture of two isomers of the complex [Co(2)(CNBu(t))(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (4). NMR data for the new compounds are reported and discussed.  相似文献   

16.
The reaction of Ru3(CO)12 with tetramethyltrifluoromethylcyclopentadiene at various ratios of the reagents was studied. Refluxing of Ru3(CO)12 with a sixfold excess of tetramethyltrifluoromethylcyclopentadiene in octane in an inert atmosphere gave a complex, which is, according to X-ray diffraction data, a dimer,trans-[Ru(η5-C5Me4CF3)(CO)2]2. The reaction under the same conditions but starting from Ru3(CO)12 and C5Me4CF3H in 2∶1 molar ratio gave a hexaruthenium cluster [Ru63-H)(η24-CO)2(μ-CO)(Co)125-C5Me4CF2)], which was characterized by IR as well as1H,13C, and19F NMR spectroscopy. According to X-ray diffraction data, an Ru4 tetrahedron, in which two edges are bound by additional “briding” Ru atoms, constitutes the frame of this compound. This complex has one (η5-C5Me4CF3) ligand, as well as one (μ3-H) and two (η24-CO) groups. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 507–512, March, 1998.  相似文献   

17.
Fullerenes are generally considered as highly symmetric, yet fullerene isomers with only C(1) symmetry, such as C(1)(30)-C(90) and C(1)(32)-C(90) whose structures are reported here, become increasingly numerous as fullerene size increases.  相似文献   

18.
The reaction of phosphoryl radicals with (η2-C60)lrH(CO)(PPh3)2 and (η2-C60IrH(8H12)(PPh3) was shown (ESR) to result in the formation of isomers differing in the constants of hyperfine interaction (HFI) with31P nuclei,g-factors, and linewidths. It is likely that the addition of phosphoryl radicals at a distance of two-three bond lengths from the metallofragment is predominant. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 870–872, April, 1997.  相似文献   

19.
The reaction of [Sn(NMe(2))(2)](2) (1) with 4 equiv of HOCH(2)CMe(3) (HONep) leads to the isolation of [Sn(ONep)(2)](infinity) (2). Each Sn atom is four coordinated with mu-ONep ligands bridging the metal centers; however, if the free electrons of the Sn(II) metal center are considered, each Sn center adopts a distorted trigonal bipyramidal (TBP) geometry. Through (119)Sn NMR experiments, the polymeric compound 2 was found to be disrupted into smaller oligomers in solution. Titration of 2 with H(2)O led to the identification of two unique hydrolysis products characterized by single-crystal X-ray diffraction as Sn(5)(mu(3)-O)(2)(mu-ONep)(6) (3) and Sn(6)(mu(3)-O)(4)(mu-ONep)(4) (4). Compound 3 consists of an asymmetrical molecule that has five Sn atoms arranged in a square-based pyramidal geometry linked by four basal mu-ONep ligands, two facial mu(3)-O, and two facial mu-ONep ligands. Compound 4 was solved in a novel octahedral arrangement of six Sn cations with an asymmetric arrangement of mu(3)-O and mu-ONep ligands that yields two square base pyramidal and four pyramidal coordinated Sn cations. These compounds were further identified by multinuclear ((1)H, (13)C, (17)O, and (119)Sn) solid-state MAS and high resolution, solution NMR experiments. Because of the complexity of the compounds and the accessibility of the various nuclei, 2D NMR experiments were also undertaken to elucidate the solution behavior of these compounds. On the basis of these studies, it was determined that while the central core of the solid-state structures of 3 and 4 is retained, dynamic ligand exchange leads to more symmetrical molecules in solution. Novel products 3 and 4 lend structural insight into the stepwise hydrolysis of Sn(II) alkoxides.  相似文献   

20.
The reaction of Cp2Mo2(CO)4 with [Ru3(CO)8(3-HC2Ph)(4-S)]2,1 has yielded the new pentanuclear mixed metal cluster complex Ru3Mo2(CO)11Cp2(4-C Ph)(3-S)(-H),2 in 25% yield. Compound2 was characterized by single-crystal x-ray diffraction analysis and was shown to consist of a bow-tie cluster of two molybdenum and three ruthenium atoms. The sulfido ligand bridges the Mo2Ru triangular group. The HC2 Ph ligand in1 was converted to a 4-C2 Ph ligand that bridges an Ru3 triangular group but extends its bridging to one of the molybdenum atoms of the Mo2Ru triangular group. Crystal data for2: space group = ,a=11.868(1) Å,b=15.992(2) Å,c=9.248(1) Å, =105.67(1)°, =105.70(1)°, =76.10(1)°,Z=2, 4982 reflections,R=0.023.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号