首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The positron emission particle tracking (PEPT) technique has been widely used in science and engineering to obtain detailed information on the motion and flow fields of fluids or granular materials in multiphase systems, for example, fluids in rock cracks, chemical reactors and food processors; dynamic behaviour of granular materials in chemical reactors, granulators, mixers, dryers, rotating kilns and ball mills. The information obtained by the PEPT technique can be used to optimise the design, operational conditions for a wide range of industrial process systems, and to evaluate modelling work. The technique is based on tracking radioactively labelled particles (up to three particles) by detecting the pairs of backto-back 511 keV γ-rays arising from annihilation of emitted positrons. It therefore involves a positron camera, location algorithms for calculating the tracer location and speed, and tracer labelling techniques. This paper will review the particle tracking technique from tracking algorithm, tracer labelling to their application.  相似文献   

2.
《Particuology》2008,6(1):16-23
The positron emission particle tracking (PEPT) technique has been widely used in science and engineering to obtain detailed information on the motion and flow fields of fluids or granular materials in multiphase systems, for example, fluids in rock cracks, chemical reactors and food processors; dynamic behaviour of granular materials in chemical reactors, granulators, mixers, dryers, rotating kilns and ball mills. The information obtained by the PEPT technique can be used to optimise the design, operational conditions for a wide range of industrial process systems, and to evaluate modelling work. The technique is based on tracking radioactively labelled particles (up to three particles) by detecting the pairs of back-to-back 511 keV γ-rays arising from annihilation of emitted positrons. It therefore involves a positron camera, location algorithms for calculating the tracer location and speed, and tracer labelling techniques. This paper will review the particle tracking technique from tracking algorithm, tracer labelling to their application.  相似文献   

3.
In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements.  相似文献   

4.
PEPT study of particle motion for different riser exit geometries   总被引:1,自引:0,他引:1  
Laboratory and industrial risers are equipped with exits of many different layouts, and numerous publications discuss the influence of riser exit geometry on local and overall solids hydrodynamics in the riser. The present paper reviews literature findings--mostly based upon indirect experimental techniques and often somewhat contradictory, Direct measurement of particle velocity and particle occupancy near and in the riser exit provide a better indication of the effect of riser exit geometry. Positron Emission Particle Tracking (PEPT) was used in this work for the first time to investigate the exit region of the riser, An abrupt or sharp exit causes particles to be knocked out of the gas flow, so forming a recirculation or reflux region in the upper part of the riser. This is much less pronounced with a curved or gradual exit.  相似文献   

5.
When using acoustic emission to locate the friction fault source of rotating machinery, the effects of strong noise and waveform distortion make accurate locating difficult. Applying neural network for acoustic emission source location could be helpful. In the BP Wavelet Neural Network, BP is a local search algorithm, which falls into local minimum easily. The probability of successful search is low. We used Shuffled Frog Leaping Algorithm (SFLA) to optimize the parameters of the Wavelet Neural Network, and the optimized Wavelet Neural Network to locate the source. After having performed the experiments of friction acoustic emission's source location on the rotor friction test machine, the results show that the calculation of SFLA is simple and effective, and that locating is accurate with proper structure of the network and input parameters.  相似文献   

6.
Understanding the rheological behavior of dilute dispersions of cylindrical nanomaterials in fluids is the first step towards the development of rheological models for these materials. Individual particle tracking was used to quantify the rotational and translational diffusivities of high-aspect-ratio germanium nanowires in alcohol solvents at room temperature. In spite of their long lengths and high aspect ratios, the rods were found to undergo Brownian motion. This work represents the first time that the effects of solvent viscosity and confinement have been directly measured and the results compared to proposed theoretical models. Using viscosity as a single adjustable parameter in the Kirkwood model for Brownian rods was found to be a facile and versatile way of predicting the diffusivities of nanowires across a broad range of length scales.  相似文献   

7.
A digital-image-based simulation methodology is applied to evaluate the influence of heterogeneous porosity on the evolution of tracer concentrations in imaged tracer tests. Maps of computed tomography (CT)-number are calibrated relative to average porosity, and then thresholded to define porosity maps. These data are then used to automate the distribution of parameters within a finite element representation of the geometry. The technique is applied to characterize the variability of the porosity, the hydraulic conductivity, and the diffusivity for an artificially fractured chalk core (30 × 5 cm). X-ray CT was used both to characterize the initial condition of the core, and then to concurrently monitor the transport of an NaI tracer within the fracture and into the surrounding matrix. The X-ray CT imaging is used to characterize the heterogeneous rock porosity, based on which the hydraulic conductivity, and diffusivity of the chalk were defined and were directly imported into our newly developed three-dimensional FEMLAB-based multiple physics simulator. Numerical simulations have confirmed the observed tracer transport behaviors: (1) The different tracer-penetration distances imaged in the matrix above and below the horizontal fracture are indicative of a greater tracer mass penetrating into the lower matrix; and (2) Transport in the matrix below the fracture was enhanced. The computer simulated tracer concentration distributions compare favorably with those monitored by X-ray CT.  相似文献   

8.
Laboratory-scale experiments with explosive charges in the milligram range are a useful tool to investigate basic blast wave phenomena and to replicate, to some extent, large-scale explosions. This paper reviews and discusses the optical diagnostics that can be applied in these experiments and outlines how these techniques can be used to obtain new information about the propagation and interaction of blast waves. Performance criteria for the required instrumentation are established. Several examples illustrate the potential and the limitations of this approach to blast wave research. PACS 47.40.Nm; 52.35.Tc; 42.40.Kw An abridged version of this paper was presented at the First International Symposium on Interdisciplinary Shock Wave Research in Sendai, Japan, from March 22 to 24, 2004.  相似文献   

9.
In this paper, a Structural Health Monitoring (SHM) technique for damage identification in beam-like and truss structures using Frequency Response Function (FRF) data coupled with optimization techniques is presented. Genetic Algorithm (GA) and Bat Algorithm (BA) are used to estimate the location and severity of damage. The damage in the structures is simulated by reduction in rigidity of specific members. Both optimization techniques are coupled with modelled structures using Finite Element Method (FEM). The approach is based on minimizing an objective function by comparing measured and calculated FRFs. The results show that better accuracy is obtained using BA than using GA in terms of precision and computational time. Furthermore, it is found that the proposed approach provides faster solution than other approaches in the literature.  相似文献   

10.
颗粒湍流和颗粒碰撞的相互作用规律是两相流动中的核心问题。用颗粒湍流模型和颗粒碰撞的动力论模型叠加的方法在研究两相湍流流动方面取得了一定的成效,但是还有待改进。本文基于颗粒湍流形成大尺度脉动和颗粒间碰撞引起小尺度脉动的概念,从双流体模型出发,建立了两相流动的双尺度kp-pε两相湍流模型。利用该模型对下行床和突扩室内的气固...  相似文献   

11.
Dispersive tracer released in a unidirectional velocity field belonging to a stratified porous of finite height describes a transition, called relaxation, from a convective dominated behaviour for short times to Fickian behaviour for asymptotic long times. The temporal relaxation state of the tracer is controlled by the transverse mixing term. In most practical applications, the orders of the time and length scales of the relaxation mechanism are such that in an upscaled model of a stratified medium the dispersive flux is in a pre-asymptotic state. Explicit modelling of the relaxation of the dispersive flux in the pre-asymptotic region is required to improve the accuracy. This paper derives a pre-asymptotic one-dimensional upscaled model for the transverse averaged tracer concentration. The model generalises Taylor dispersion (Proc. R. Soc. London 219, 186–203 (1953)) and extends the method of Camacho (Phys. Rev. E 47(2), 1049–1053 (1993a); Phys. Rev. E 48 (1993b)) to dispersion tensors that may vary as function of the transverse direction. In the averaging step, the governing two-dimensional equation is first spectrally decomposed in terms of the eigenfunctions of the transverse mixing term. Next, the resulting modal relaxation equations are combined into an effective relaxation equation for the extended dispersive Taylor flux. Contrary to the one-dimensional Fickian approach, the upscaled model approximates the multi-scale relaxation behaviour as a single scale relaxation process and accounts for the partial reversibility of convective dispersion upon reversal of the flow direction. The upscaled model is evaluated against the original two-dimensional model by means of moment analysis. The longitudinal tracer variance predicted by our model is quantitatively correct in the short and long time limits and is qualitatively correct for intermediate times.  相似文献   

12.
A new method for the simulation of the translational and rotational motions of a system containing a sedimenting particle interacting with a neutrally buoyant particle has been developed. The method is based on coupling the quasi-static Stokes equations for the fluid with the rigid body equations of motion for the particles. The Stokes equations are solved at each time step with the boundary element method. The stresses are then integrated over the surface of each particle to determine the resultant forces and moments. These forces and moments are inserted into the rigid body equations of motion to determine the translational and rotational motions of the particles. Unlike many other simulation techniques, no restrictions are placed on the shape of the particles. Superparametric boundary elements are employed to achieve accurate geometric representations of the particles. The simulation method is able to predict the local fluid velocity, resolve the forces and moments exerted on the particles, and track the particle trajectories and orientations.  相似文献   

13.
It was proposed that a robust and efficient parallelizable preconditioner for solving general sparse linear systems of equations, in which the use of sparse approximate inverse (AINV) techniques in a multi-level block ILU (BILUM) preconditioner wereinvestigated. The resulting preconditioner retains robustness of BILUM preconditioner and has two advantages over the standard BILUM preconditioner : the ability to control sparsity and increased parallelism. Numerical experiments are used to show the effectiveness and efficiency of the new preconditioner.  相似文献   

14.
The horizontal flow of coarse particle suspensions in non-Newtonian carrier fluids was numerically simulated using an Eulerian–Eulerian CFD model. This study was concerned with nearly-neutrally buoyant particles of 5 and 10 mm diameter conveyed by fluids of Ellis rheology in laminar flow, in a 45 mm diameter pipe at concentrations up to 41% v/v. CFD predictions of solid phase velocity profiles and passage times were compared to experimental data obtained by a Positron Emission Particle Tracking (PEPT) technique and Hall effect sensors, and a very good agreement was obtained considering the complexity of the flows studied. CFD predictions of solid–liquid pressure drop were compared to a number of relevant correlations gleaned from the literature. Only one of them showed a good agreement over the whole range of conditions studied. Other correlations generally showed large deviations from CFD, and their limitations in predicting the influence of solids concentration and particle size have been demonstrated. Overall, it emerged that for the flows studied, CFD was capable of giving predictions of pressure drop which were probably better and more reliable than the correlations available in the literature.  相似文献   

15.
16.
A new numerical method for particle tracking (Lagrangian particle advection) on 2‐D unstructured grids with triangular cells is presented and tested. This method combines key attributes of published methods, including streamline closure for steady flows and local mass conservation (uniformity preservation). The subgrid‐scale velocity reconstruction is linear, and this linear velocity field is integrated analytically to obtain particle trajectories. A complete analytic solution to the 2‐D system of ordinary differential equations (ODEs) governing particle trajectories within a grid cell is provided. The analytic solution to the linear system of locally mass‐conserving constraints that must be enforced to obtain the coefficients in the ODEs is also provided. Numerical experiments are performed to demonstrate that the new method has substantial advantages in accuracy over previously published methods and that it does not suffer from unphysical particle clustering. The method can be used not only in particle‐tracking applications but also as part of a semi‐Lagrangian advection scheme.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The solution of the Poisson's equation used by the incompressible smoothed particle hydrodynamics (ISPH) methods for estimating the pressure field is expensive in CPU time. The CPU time, consumed by the inversion of the operator ∇(1/ρ∇) and the estimation of the right hand side of the Poisson's equation, increases with the number N of particles used in a purely Lagrangian framework. In this work, this default of ISPH methods is overcome by solving the Poisson's equation on a Cartesian grid. This SPH-mesh coupling is equivalent to the particle in cell method. In a first step, in order to analyze its efficiency, the optimized version of two ISPH methods (divergence free and density invariant) is compared with the standard weakly compressible SPH method through two benchmarks of incompressible bidimensional flows characterized by the Reynolds number Re, Lamb-Oseen vortex (10 ≤Re≤ 100) and lid-driven cavity flow (100 ≤Re≤ 1000). In a second step, the numerical results obtained by the three SPH methods are compared to laboratory experimental data of a dam break flow in order to show the performance of the SPH-mesh coupling in a practical and complex flow problem. As in the configuration of the experimental setup, the numerical results are obtained for a Reynolds number Re = 3.8 106.  相似文献   

18.
We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration τ>0). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings.  相似文献   

19.
DEM prediction of industrial and geophysical particle flows   总被引:2,自引:0,他引:2  
Simulation of industrial particle flows using DEM (Discrete Element Method) offers the opportunity for better understanding of the flow dynamics by the inclusion of particle scale physics that often determine the nature of these flows. Increased understanding from the models can lead to improvements in equipment design and operation, potentially leading to large increases in equipment and process efficiency, throughput and/or product quality. Industrial applications are typically large and involve complex p...  相似文献   

20.
In this work, structural finite element analyses of particles moving and interacting within high speed compressible flow are directly coupled to computational fluid dynamics and heat transfer analyses to provide more detailed and improved simulations of particle laden flow under these operating conditions. For a given solid material model, stresses and displacements throughout the solid body are determined with the particle–particle contact following an element to element local spring force model and local fluid induced forces directly calculated from the finite volume flow solution. Plasticity and particle deformation common in such a flow regime can be incorporated in a more rigorous manner than typical discrete element models where structural conditions are not directly modeled. Using the developed techniques, simulations of normal collisions between two 1 mm radius particles with initial particle velocities of 50–150 m/s are conducted with different levels of pressure driven gas flow moving normal to the initial particle motion for elastic and elastic–plastic with strain hardening based solid material models. In this manner, the relationships between the collision velocity, the material behavior models, and the fluid flow and the particle motion and deformation can be investigated. The elastic–plastic material behavior results in post collision velocities 16–50% of their pre-collision values while the elastic-based particle collisions nearly regained their initial velocity upon rebound. The elastic–plastic material models produce contact forces less than half of those for elastic collisions, longer contact times, and greater particle deformation. Fluid flow forces affect the particle motion even at high collision speeds regardless of the solid material behavior model. With the elastic models, the collision force varied little with the strength of the gas flow driver. For the elastic–plastic models, the larger particle deformation and the resulting increasingly asymmetric loading lead to growing differences in the collision force magnitudes and directions as the gas flow strength increased. The coupled finite volume flow and finite element structural analyses provide a capability to capture the interdependencies between the interaction of the particles, the particle deformation, the fluid flow and the particle motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号