首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-wall carbon nanotubes (SWNTs) were synthesized by the irradiation of 20-ms CO2 laser pulses onto a graphite–Co/Ni target at room temperature. We investigated the effect of laser power density (10–150 kW/cm2) and ambient Ar gas pressure (150–760 Torr) on the abundance of SWNTs with lengths of up to about 200 nm in soot-like carbonaceous deposits. For a constant power density (30 kW/cm2), depending on the Ar gas pressure, SWNTs with diameters of 1.2–1.4 nm were synthesized. Expansion behavior and temperature-fall rates of clusters and/or particles in laser plumes were also analyzed by high-speed video imaging and temporally and spatially resolved emission spectroscopy. The temperature-fall rates were estimated to be 171–427 K/ms. The SWNT growth on the time scale of a few milliseconds appeared to be related to some features of condensing clusters and/or particles, including resident densities, collision frequencies and temperatures. Received: 16 July 2001 / Accepted: 23 July 2001 / Published online: 30 August 2001  相似文献   

2.
The first single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with two thermally fixed photorefractive gratings as resonator mirrors is reported. The optically pumped (λp=1480 nm,120-mW incident power) laser emits up to 1.1 mW at λs=1561.1 nm. The threshold pump power is 70 mW. Received: 7 June 2001 / Published online: 30 October 2001  相似文献   

3.
The nonlinear absorption and refraction of the clusters [MoS4Cu4Br2(py)6] and [Et4N]2[MoS4Cu4(SCN)4(2-pic)4] have been investigated using the z-scan technique with a ns laser at 532 nm wavelength. They have the same planar ‘open’ structures and the same skeleton metal atoms; the only difference is that the former has halogen ligands while the latter possesses pseudo-halogen groups – SCN – as ligands. Alteration of nonlinear refractive index and enhancement of nonlinear absorption were found in these two clusters. A steady state model of excited state nonlinear refraction was proposed to explain this phenomenon. Received: 12 June 2001 / Revised version: 4 September 2001 / Published online: 29 November 2001  相似文献   

4.
In this work, we used the multilayered ZnS–SiO2/AgO x /ZnS–SiO2 films as the laser direct writing materials, and pattern structures with different shapes and sizes were directly written with green laser (λ=488 nm). Compared with traditional photoresist materials, the pattern structures can be directly formed in this film structures without developing and etching procedures and also can be directly written by very low laser power. By tuning the laser parameters precisely, pattern structures with different sizes and shapes could be obtained as well. The analysis indicates that the formation mechanism of the pattern structure is mainly due to the volume expansion caused by AgO x decomposition into silver particles and oxygen. The oxygen applies pressure to the ZnS–SiO2 layer and makes a hollow shell under the film. The aspect ratios of the patterns rapidly increase from the minimum of 0.012 in laser power of 3.0 mW to the maximum of 0.201 in laser power of 5.0 mW. The thermal stability of the patterns was also qualitatively studied.  相似文献   

5.
Surface ablation of cobalt-cemented tungsten carbide hard metal has been carried out in this work using a 308 nm, 20 ns XeCl excimer laser. Surface microphotography and XRD, as well as an electron probe have been used to investigate the transformation of phase and microstructure as a function of the pulse-number of laser shots at a laser fluence of 2.5 J/cm2. The experimental results show that the microstructure of cemented tungsten carbide is transformed from the original polygonal grains of size 3 μm to interlaced large, long grains with an increase in the number of laser shots up to 300, and finally to gross grains of size 10 μm with clear grain boundaries after 700 shots of laser irradiation. The crystalline structure of the irradiated area is partly transformed from the original WC to βWC1-x, then to αW2C and CW3, and finally to W crystal. It is suggested that the undulating ‘hill–valley’ morphology may be the result of selective removal of cobalt binder from the surface layer of the hard metal. The formation of non-stoichiometric tungsten carbide may result from the escape of elemental carbon due to accumulated heating of the surface by pulsed laser irradiation. Received: 13 July 2000 / Accepted: 27 October 2000 / Published online: 10 January 2001  相似文献   

6.
A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4–4.5 μm region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal, DFG power levels of 10 μW were generated at approximately 4 μm in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of ∼12 cm-1 and a temperature tuning rate of 1.02 cm-1/°C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described. Received: 23 October 2000 / Revised version: 22 January 2001 / Published online: 27 April 2001  相似文献   

7.
A compact and efficient diode-pumped intracavity-frequency-doubled Nd:GdVO4/KTP green laser is demonstrated with a flat–flat cavity design. With a 1.3 at. % Nd3+-doped GdVO4 crystal and pumped at the weak-absorption peak of 806 nm, the second-harmonic output power at 532 nm was measured to be 1.95 W at an incident pump power of 8.4 W, corresponding to an optical conversion efficiency of 23.2%. The output characteristic at the fundamental wavelength of 1.063 μm was investigated with two different pump wavelengths. More than 4.5-W output power was generated when the laser was pumped at 806.2 nm. Received: 26 July 2000 / Revised version: 18 September 2000 / Published online: 7 February 2001  相似文献   

8.
We deposited amorphous thin films of boron carbide by pulsed laser deposition using a B4C target at room temperature. As the laser fluence increased from 1 to 3 J/cm2, the number of 0.25–5 μm particulates embedded in the films decreased, and the B/C atomic ratio of the films increased from 1.8 to 3.2. The arrival of melt droplets, atoms, and small molecular species depending on laser fluence appeared to be involved in the film formation. In addition, with increasing fluence the nanoindentation hardness of the films increased from 14 to 32 GPa. We believe that the dominant factor in the observed increase in the films’ hardness is the arrival of highly energetic ions and atoms that results in the formation of denser films. Received: 23 March 2001 / Accepted: 1 July 2001 / Published online: 2 October 2001  相似文献   

9.
Compositionally graded (Ba1-xSrx)TiO3 (BST) (x:0.0∼0.25) thin films were grown on Pt (111)/TiO2/SiO2/Si (100) substrates using layer-by-layer pulsed laser deposition in the temperature range 550–650 °C. Both downgraded (Ba/Sr ratio varying from 100/0 at the bottom surface to 75/25 at the top surface) and upgraded (Ba/Sr ratio varying from 75/25 at the bottom surface to 100/0 at the top surface) BST films were prepared. Their microstructures were systematically studied by X-ray diffractometry and scanning electron microscopy. A grain morphology transition from large ‘rosettes’ (>0.30 μm) to small compact grains (70–110 nm) was observed in the downgraded BST films as the deposition temperature was increased from 550 to 650 °C. No such grain morphology transition was detected in the upgraded BST films. Dielectric measurements with metal electrodes revealed an enhanced dielectric behavior in the downgraded films. This enhancement is mainly attributed to the large compressive stress field built up near the interface between the downgraded film and substrate. Furthermore, the BaTiO3 layer in the downgraded BST films not only serves as a bottom layer but also as an excellent seeding layer for enhancing the crystallization of the subsequent film layers in the downgraded films. Received: 10 December 2001 / Accepted: 12 March 2002 / Published online: 19 July 2002 RID="*" ID="*"Corresponding author. Fax: 86-25/359-5535, E-mail: xhzhu@public1.ptt.js.cn  相似文献   

10.
Laser-induced periodic surface structures (LIPSS) were generated on oriented and amorphous thick, as well as on spin-coated thin, poly-carbonate films by polarized ArF excimer laser light. The influence of the film structure and thickness on the LIPSS formation was demonstrated. Below a critical thickness of the spin-coated films the line-shaped structures transformed into droplets. This droplet formation was explained by the laser-induced melting across the whole film thickness and subsequent de-wetting on the substrate. The thickness of the layer melted by laser illumination was computed by a heat-conduction model. Very good agreement with the critical thickness for spin-coated films was found. The original polymer film structure influences the index of refraction of the thin upper layer modified by the laser treatment, as was proven by the dependence of the structure’s period on the angle of incidence both for ‘s’- and ‘p’-polarized beams. The effect of the original surface roughness – grains in thick films or holes in thin films – was studied using atomic force microscopy. It was shown that the oblique incidence of ‘s’-polarized beams results in an intensity confinement in the direction of the forward scattering and in asymmetrical interference pattern formation around these irregularities. A new, two-dimensional grating-like structure was generated on spin-coated films. These gratings might be used as a special kind of mask. Received: 10 July 2001 / Accepted: 23 July 2001 / Published online: 30 August 2001  相似文献   

11.
The formation and development of the large-scale periodic structures on a single crystal Si surface are studied upon its evaporation by pulsed radiation of a copper vapor laser (wavelength of 510.6 nm, pulse duration of 20 ns). The development of structures occurs at a high number of laser shots (∼104) at laser fluence of 1–2 J/cm2 below optical breakdown in a wide pressure range of surrounding atmosphere from 1 to 105 Pa. The structures are cones with angles of 25, which grow towards the laser beam and protrude above the initial surface for 20–30 μm. It is suggested that the spatial period of the structures (10–20 μm) is determined by the capillary waves period on the molten surface. The X-ray diffractometry reveals that the modified area of the Si substrate has a polycrystalline structure and consists of Si nanoparticles with a size of 40–70 nm, depending on the pressure of surrounding gas. Similar structures are also observed on Ge and Ti. Received: 12 February 2000 / Accepted: 28 March 2000 / Published online: 20 June 2001  相似文献   

12.
Hollow cathode (HC) lasers usually operate in a single axial mode without any optical selection. This is attributed to the large homogeneous linewidth of the gain curve due to the relatively high filling pressure of these lasers. Collisional and Doppler broadening (ΔνC and ΔνD) of the Cd+ 636 nm and Cd+ 538 nm lines (laser transitions of the HeCd+ laser) excited in a HC discharge tube were determined using a Fabry–Perot interferometer technique. It was found that in the pressure range 7–25 mbar ΔνD was nearly constant, while, as expected, ΔνC increased linearly with pressure. The broadening constants were α(636 nm)= (47±2) MHz/mbarand α(538 nm)=(11.8±0.5) MHz/mbar. The first constant is large enough to explain single-mode operation of the red HeCd+ laser; but in the case of the green laser, the exact reason for the single-mode operation remained unclear. Received: 23 November 2000 / Revised version: 30 March 2001 / Published online: 7 June 2001  相似文献   

13.
We present the results obtained with a Ho,Tm:YLF crystal grown at a new crystal growth facility in Pisa. The optical quality of the sample has been tested by studying its performance as the active medium of a laser operating at 2.06 μm. We employed three different pump laser sources: a Ti:sapphire, a diode (both tuned at 793 nm) and, for the first time, a continuous-wave Co:MgF2 laser, tuned at 1.682 μm. At room temperature the best slope efficiency was 30 % in the case of “red” pumping, and 59 % in the case of “infrared” excitation. The typical lasing threshold is about 100 mW. Received: 14 March 2001 / Revised version: 15 June 2001 / Published online: 19 September 2001  相似文献   

14.
A miniaturized, high repetition rate, picosecond all solid state photo-induced distributed feedback (DFB) polymer-dye laser is described by applying a passively Q-switched and frequency-doubled Cr4+:Nd3+:YAG-microchip laser (pulse width Δτ=540 ps, repetition rate ν=3 kHz, pump energy Epump=0.15 μJ) as a pump source. A poly-methylmethacrylate film doped with rhodamine B dye serves as active medium. The DFB-laser pulses are temporally and spectrally characterized, and the stability of the thin polymer/dye film at high repetition rates is analyzed. The shortest DFB-laser pulses obtained have a duration of 11 ps. After the emission of 350000 pulses the intensity of the DFB-laser output has decreased by a factor of two and the pulse duration has increased by a factor of 1.2. For single DFB-laser pulses of 20-ps duration the spectral bandwidth is measured to be Δλ=0.03 nm, which is only 0.005 nm above the calculated Fourier limit assuming a Gaussian profile for the temporal shape of the pulses. Coarse wavelength tuning of the DFB laser between 590 and 619 nm is done by turning the prism. Additionally, a fine tuning of the DFB-polymer-laser wavelength is achieved by changing the temperature of the polymer/dye layer (=-0.05 nm/°C) in the range from 20 to 40 °C. Received: 1 March 2001 / Revised version: 23 May 2001 / Published online: 18 July 2001  相似文献   

15.
2 and two diode lasers as pump sources are presented. A single-mode Fabry–Pérot-type tunable diode laser (TDL) and an external-cavity diode laser (ECL) were combined to generate radiation in the mid-infrared region near 7.2 μm. With a TDL at a wavelength of approximately 1290 nm and an ECL emitting between 1504 and 1589 nm it was possible to carry out spectroscopic experiments concerning SO2 at five different phasematching points between 1350 and 1400 cm-1 by fixing the wavelength of one pump laser and tuning the wavelength of the other. With an input power of 8 mW for the single-mode Fabry–Pérot-type diode laser and 6 mW for the external-cavity laser an output power of about 10 nW was generated. Using the tuning capabilities of the external-cavity laser a spectral region up to 5 cm-1 could be covered within one scan. Measurements of SO2 absorption lines at low pressure demonstrate the high-resolution features of the spectrometer. Moreover, these data provide new direct experimental phasematching data for the rarely investigated spectral region at 7.2 μm. Received: 27 October 1997/Revised version: 8 May 1998  相似文献   

16.
Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence and at high substrate temperatures, the specific resistivity of the films, 2–3×10-4 Ω cm, is comparable to values obtained with excimer lasers, whereas the resistivities obtained at room temperature are somewhat higher than those of films produced by excimer lasers. The transmission coefficient of visible light, about 0.9, is also comparable to values for films deposited by excimer lasers. The crystalline structure of films produced at 355 nm is similar to that of samples produced by these lasers. Received: 16 January 2001 / Accepted: 24 July 2001 / Published online: 17 October 2001  相似文献   

17.
Physical vapor deposition techniques such as sputtering and laser ablation – which are very commonly used in thin film technology – appear to hold much promise for the synthesis of nanocrystalline thin films as well as loosely aggregated nanoparticles. We present a systematic study of the process parameters that facilitate the growth of nanocrystalline metals and oxides. The systems studied include TiO2, ZnO, γ-Al2O3, Cu2O, Ag and Cu. The mean particle size and crystallographic orientation are influenced mainly by the sputtering power, the substrate temperature and the nature, pressure and flow rate of the sputtering gas. In general, nanocrystalline thin films were formed at or close to 300 K, while loosely adhering nanoparticles were deposited at lower temperatures. Received: 31 October 2000 / Accepted: 9 January 2001 / Published online: 26 April 2001  相似文献   

18.
Room-temperature cw laser operation on the 3 F 4?3 H 6 transition at 1.85 μm of Tm3+ ions in a KY3F10 single crystal is reported here for the first time. Using a cw Ti:sapphire laser as a pump source, a threshold absorbed pump power of 120 mW and a laser slope efficiency of 42.5% were achieved by using a 45% transmissive output coupler. Optimization of the activator concentration and crystal length is discussed taking into account self-quenching and pump-absorption efficiencies as well as parasitic and intrinsic reabsorption losses. The emission cross-section at the laser wavelength is determined using different methods, showing that the result of the J–O approach is, in this case, very uncertain. Received: 2 January 2001 / Revised version: 7 February 2001 / Published online: 27 April 2001  相似文献   

19.
The fabrication of three-dimensional layered structures with 180-nm-thick TaOx top layers supported by 1.5-μm-thick Mo pillars formed on a glass substrate is presented. The photoresist used for planarization was successfully removed through the TaOx layers using heat treatment at 270 °C with mixed vapors of ethyl alcohol and pure water at high pressure for 3 h. Vacancies underlying the TaOx layers were consequently formed. The possibility of rapid and lateral crystallization of amorphous silicon films was demonstrated when the silicon films formed on the TaOx overlaying the vacancy regions were irradiated using a frequency-doubled YAG laser at 250 mJ/cm2. Energy sensors using Cr/Al metal wires, with a high sensitivity of 0.07 mW/cm2, were also demonstrated using the present structure with vacancy regions for reduction of heat diffusion. Received: 22 January 2001 / Accepted: 24 January 2001 / Published online: 27 June 2001  相似文献   

20.
Pigment-grade anatase TiO2 particles (160 nm) were passivated using ultra-thin insulating films deposited by molecular layer deposition (MLD). Trimethylaluminum (TMA) and ethylene glycol (E.G) were used as aluminum alkoxide (alucone) precursors in the temperature range of 100–160 °C. The growth rate varied from 0.5 nm/cycle at 100 °C to 0.35 nm/cycle at 160 °C. Methylene blue oxidation tests indicated that the photoactivity of pigment-grade TiO2 particles was quenched after 20 cycles of alucone MLD film, which was comparable to 70 cycles of Al2O3 film deposited by atomic layer deposition (ALD). Alucone films would decompose in the presence of water at room temperature and would form a more stable composite containing aluminum, which decreased the passivation effect on the photoactivity of TiO2 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号