首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the structural, surface morphological and magnetic properties of single-step electrochemically deposited cobalt ferrite thin films. The prepared films were nanocrystalline with cubic crystal structure. Scanning electron micrograph image showed that the cobalt ferrite thin film was uniformly distributed over the substrate in addition to some random overgrowth of porous particles. The saturation magnetization of 298 emu/c was confirmed when films were used in magnetic studies.  相似文献   

2.
刘银  丘泰 《中国物理》2007,16(12):3837-3842
Nanocrystalline Ni0.5Zn0.5 ferrite with average grain sizes ranging from 10 to 100 nm is prepared by using a spraying-coprecipitation method. The results indicate that the nanocrystalline Ni0.5Zn0.5 ferrite is ferromagnetic without the superparamagnetic phenomenon observed at room temperature. Specific saturation magnetization of nanocrystalline Nio.sZno.5 ferrite increases from 40.2 to 75.6 emu/g as grain size increases from 11 to 94nm. Coercivity of nanocrystalline Ni0.5Zn0.5 ferrite increases monotonically when d 〈 62 nm.The relationship between the coercivity and the mean grain size is well fitted into a relation Hc - d^3. A theoretically evaluated value of the critical grain size is 141nm larger than the experimental value 62nm for nanocrystalline Ni0.5Zn0.5 ferrite. The magnetic behaviour of nanocrystalline Ni0.5Zn0.5 ferrite may be explained by using the random anisotropy theory.  相似文献   

3.
Magnetic nanocomposites formed by cobalt ferrite particles dispersed in a silica matrix were prepared by a sol-gel process. The effects of the thermal treatment temperature and the salt concentration on the structural and magnetic properties of the composites were investigated. By controlling these parameters, CoFe2O4/SiO2 nanocomposites with different crystallite size and magnetic properties were obtained. By increasing the annealing temperature and salt concentration, composites with a progressive increase in the coercive field and of the density of magnetization were produced. In particular, a nanocomposite, with a Fe/Si molar concentration of 21%, obtained by drying the gel at 150 °C and further annealing at 800 °C, has a coercivity of 2000 Oe, which is more than twice higher than the coercivity of bulk cobalt ferrite.  相似文献   

4.
Cobalt ferrite has attracted considerable attention in recent years due to its unique physical properties such as high Curie temperature, large magnetocrystalline anisotropy, moderate saturation magnetization, large magnetostrictive coefficient, excellent chemical stability and mechanical hardness. In this work we present the preparation, of fucan coated cobalt ferrite nanoparticles by a modified co-precipitation method and the study of their structural, microstructural and magnetic characteristics for their application as a solid support for enzymes immobilization and other biotechnology applications. Aqueous suspensions of magnetic particles were prepared by coprecipitation of Fe(III) and Co(II) in the presence of NaOH, acid oleic and fucan polymer. The X-ray diffraction indicates that the funtionalization does not degrade the core cobalt ferrite. The infrared (FTIR) bands, indicate the functional characteristics of the coating on the cobalt ferrite. Mössbauer spectra at room temperature indicate the presence of a broadened sextet plus a doublet which is typical of superparamagnetic relaxation. For the Co-ferrite uncoated and coated with fucan the doublets have areas of 36.1 % and 40.3 % respectively, indicating the presence of non-interacting particles and faster relaxation time. The Co-ferrite coated with oleic acid and oleic acid plus fucan have areas around 17.5 % and 17.1 % respectively which indicate a weak superparamagnetic relaxation due to a slow relaxation time. The magnetization measurements of the cobalt ferrite nanoparticles with and without coating confirm that they are superparamagnetic and this behavior is produced by the core nanoparticles rather than the coatings. The cobalt ferrite nanoparticles coated with oleic acid presented the highest magnetization than when coating with fucan.  相似文献   

5.
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.  相似文献   

6.
We have investigated the magnetic behavior of cobalt ferrite nanoparticles with a mean diameter of 7.2 nm. AC susceptibility of colloidal cobalt ferrite nanoparticles was measured as a function of temperature T from 2 to 300 K under zero external DC field for frequencies ranging from f=10 to 10,000 Hz. A prominent peak appears in both χ′ and χ″ as a function of T. The peak temperature T2 of χ″ depends on f following the Vogel–Fulcher law. The particles show superparamagnetic behavior at room temperature, with transition to a blocked state at TBm94 K in ZFC and 119 K in AC susceptibility measurements, respectively, which depends on the applied field. The saturation magnetization and the coercivity measured at 4.2 K are 27.3 emu/g and 14.7 kOe, respectively. The particle size distribution was determined by fitting a magnetization curve obtained at 295 K assuming a log-normal size distribution. The interparticle interactions are found to influence the energy barriers yielding an enhancement of the estimated magnetic anisotropy, K=6×106 erg/cm3. Mössbauer spectra obtained at higher temperatures show a gradual collapse of the magnetic hyperfine splitting typical for superparamagnetic relaxation. At 4.2 K, the Mössbauer spectrum was fitted with two magnetic subspectra with internal fields Hint of 490, 470 and 515 kOe, corresponding to Fe3+ ions in A and B sites.  相似文献   

7.
Nanosized cobalt ferrite spinel particles have been prepared by using mechanically alloyed nanoparticles. The effects of various preparation parameters on the crystallite size of cobalt ferrite which includes milling time; ball-to powder weight ratio (BPR) and sintering temperature, were studied using X-ray diffractometer (XRD). Scherrer's equation was used to study the crystallite size evolution of the as-prepared materials. The results of the as-milled sample revealed that both milling time and BPR plays a role in determining the crystallite size of the milled powder. However, where sintering is involved, the sintering temperature results in grain growth, and thus plays a dominant role in determining the final crystallite size of the samples sintered at higher temperature (above 900 °C). From the vibrating-sample magnetometer (VSM) measurement it was observed that the coercivity of the as-milled samples without sintering is almost negligible, which is a type characteristic of superparamagnetic material. However, for the sintered samples, the saturation increases while coercivity decreases with increases sintering temperature.  相似文献   

8.
The magnetic properties of nano-crystalline CoMxFe2−xO4 (where M=Gd and Pr and x=0, 0.1 and 0.2) powders prepared by a citrate precursor technique have been studied by using vibrating sample magnetometer (VSM). The crystallite sizes of the materials were varied by altering the synthetic conditions and are within the range of a minimum of 6.8 nm and a maximum of 87.5 nm. The materials were characterized by powder X-ray diffraction (XRD) and thermogravimetric (TG) measurements. TG study indicates the formation of the spinel ferrite phase at 220°C. The phase identification of the materials by XRD reveals the single-phase nature of the materials. The room temperature saturation magnetization of the ferrite materials decreases with the reduction of size. This has been attributed to the presence of superparamagnetic fractions in the materials and spin canting at the surface of nano-particles. Insertion of rare-earth atoms in the crystal lattice inhibits the grain growth of the materials in a systematic manner compared with that of the pure cobalt ferrite materials. The improved coercivity compared with those for the pure cobalt ferrites is attributed to the contribution from the single ion anisotropy of the rare-earth ions present in the crystal lattice and the surface effects resulting in alteration of magnetic structures on the surface of nano-particles.  相似文献   

9.
Cobalt ferrite nano-particles were prepared using the co-precipitation method followed by annealing treatment. The formation of nano-particles with different composition, microstructure and sizes were confirmed by X-ray diffraction, Raman, thermogravimetric-differential thermal analysis and transmission electron microscope. The magnetic hysteresis loops measured at room temperature revealed smaller effective magnetic anisotropy constant, coercivity and remanence ratio for the samples prepared by adding the NaOH solutions into the mixed solutions of Co2+ and Fe3+ ions due to the formation of Co3+ ions. A small saturation magnetization and an enhanced coercivity were observed for the nano-particles prepared by adding the mixed solutions of Co2+ and Fe3+ ions into the NaOH solutions, which was related to the formation of outer layers with poor crystallization on the surfaces of the cobalt ferrite nano-crystals. Furthermore, the existence of these outer layers induced the oxidation of Co2+ ions in cobalt ferrite nano-crystals at 200 and 300 °C, and led to a large change on the composition and magnetic properties.  相似文献   

10.
The nanocrystalline thin films of terbium-doped cobalt ferrite were fabricated by a sol–gel method, and the effects of crystallization conditions on the phase, morphology, magnetic and magneto-optical (MO) properties of products were investigated. Due to its large radius, the doping content, x, of Tb3+ ion inside cobalt spinel cannot exceed 0.2. The CoFe2−xTbxO4 films consist of the grains with the average size smaller than 50 nm even annealed up to 800°C. Saturation magnetization, coercive force and MO rotation are strongly dependent on the annealing temperature.  相似文献   

11.
A directed magnetic field induced assembly technique was employed to align two phase (h.c.p. + f.c.c.) cobalt nanoparticles in a mechanically robust long wire morphology. Co nanoparticles with an average size of 4.3 nm and saturation magnetization comparable to bulk cobalt were synthesized by borohydride reduction followed by size selection and magnetic field induced assembly. The coercivity of these nanowires was higher than their nanoparticle counterpart due to shape anisotropy. The experimental coercivity values of the nanowires were lower than the predictions of the coherent rotation, fanning and curling models of coercivity due to the preponderance of superparamagnetic particles with zero coercivity.  相似文献   

12.
Exchange biasing was studied in an exchange-spring system consisting of two ferrimagnetic films with different coercivity. Magnetite and Co-Fe ferrite were chosen as the soft and hard magnetic bilayer components, respectively. The samples were epitaxially grown on MgO single crystal substrates by pulsed laser deposition. The exchange-bias field was investigated as a function of system size and shape, magnetic field direction and magnetization reversal in the hard layer. A clear dependence of the exchange-bias field on the sample size and shape was found. This was attributed to an interplay between exchange and dipolar energies. Micromagnetic simulations agree with the experimental results.  相似文献   

13.
Cubic copper ferrite thin films, obtained by rf sputtering on quartz and subsequent post-annealing and quenching, show a large coercivity of about 300–600 Oe. Stress measurements using X-ray diffraction show high value of stress of about 400–1000 MPa. Both the stress and coercivity are found to increase with the decrease of the thickness of the films. There appears to be a contribution of the stress to the coercivity of the films, in the in-plane M–H loops.  相似文献   

14.
Evolution of static magnetic properties of a set of enhanced γ-Fe2O3/SiO2 nanocomposites with different iron concentration has been studied on the basis of their corresponding hysteresis loops, zero-field/field-cooled (ZFC/FC) magnetization curves and transmission electron microscopy images. The lack of coercivity in all compositions, as well as the fulfillment of the H/T scaling law by the magnetization above the blocking temperature of each system under study, evidence a superparamagnetic behaviour in the iron oxide nanoparticles. In order to study the influence of iron content in the unblocking processes of nanoparticles, ZFC curves under different applied magnetic fields have been fitted to a model considering the systems under study as a distribution of energy barriers. Depart from the superparamagnetic model is discussed considering interparticle interactions.  相似文献   

15.
The magnetic and magneto-optical properties of ion-synthesized cobalt nanoparticles in the amorphous silicon oxide matrix are investigated as a function of the implantation dose. The analysis of the field dependences of the magnetization and the magneto-optical Faraday and Kerr effects demonstrates that, as the ion implantation dose increases, the superparamagnetic behavior of an ensemble of cobalt nanoparticles at room temperature gives way to a ferromagnetic response with the anisotropy characteristic of a thin magnetic film. The magnetization curves for the superparamagnetic and ferromagnetic ensembles of cobalt nanoparticles are simulated to determine their average sizes and the filling density in the irradiated layer of the silicon dioxide matrix. It is revealed that the spectral dependences of the Faraday and Kerr effects for ion-synthesized cobalt nanoparticles differ substantially from those for continuous cobalt films due to the localized excitations of free electrons in the nanoparticles.  相似文献   

16.
The composite films with different weight ratio of barium ferrite to titanium dioxide are successfully prepared using sol-gel method for the first time. The morphology, crystal structure and magnetic properties of composite films are investigated with atomic force microscopy, X-ray diffraction and vibrating sample magnetometry. The results show that the composite films are uniform with no microcracks. The grain diameters are less than 100 nm. With the increase of barium ferrite, the grain diameter decreases. The composite films are composed of M-type hexagonal barium ferrite and rutile titanium dioxide. The composite films possess the excellent magnetic properties. The specific saturation magnetization and coercivity reach 18.3 emu/g and 3350 Oe, respectively. The application of composite films in magnetic recording and electromagnetic absorption fields is promising.  相似文献   

17.
The tailored production of thin Co films of 50 nm thick with ferromagnetic resonance frequency in a range from 2.9 to 7.3 GHz using the DC magnetron sputtering is reported. The ferromagnetic resonance frequency, coercivity, effective magnetic field and nanocrystalline structure parameters are shown to be governed by the Co deposition rate. For this investigation, FMR, VSM and TEM techniques were used.  相似文献   

18.
Multiferroics conventionally refer to the materials exhibiting co-existing electric, magnetic, and structure order parameters. Interplay between ferroelectricity, magnetism, and ferroelasticity in a single phase makes multiferroics truly multifunctional providing control over magnetic and electric ordering by applying electric and magnetic fields, respectively. Incorporation of multiferroic-based components into nanoscale applications will enable additional degrees of freedom in manipulating with spin and charge not easily attainable otherwise. Multiferroic bismuth ferrite lead titanate has been chemically synthesized in form of nanocrystalline films. The morphology of the films revealed a single perovskite phase confined within crystalline grains of few tens of nm in size. The films were found to exhibit ferroelectricity and ferromagnetism with characteristic electric polarization and magnetization hysteresis loops, transformations associated with spin reorientation in an external magnetic field and the spin-glassy behavior well above the room temperature. High degree of magnetic frustration and disorder in the spin system spatially confined in the nanograins, distribution of the grains anisotropy axis, inter-grain interactions, and the effects of uncompensated spins on the large effective surface/interface favored by the nanocrystalline morphology were assumed to be responsible for the anomalous magnetic properties and glassy dynamics in the films.  相似文献   

19.
Nanocomposites of 70% MgFe2O4 and 30% BaFe12O19 have been prepared by the mechano-chemical coprecipitation method. The prepared samples were annealed at different temperatures (400, 600, 800, and 1000 °C). The thermal gravimetric analysis (TGA) measurements of the as prepared samples has detected three weight losses attributed to evaporation, the decomposition of citric acid and nitrate combustion and the crystal transformation. The crystal growth of the soft phase has been proved by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) measurements. The bonds have been detected by FT-IR measurements and are assigned to the two ferrite phases constituting the nanocomposites, which means that there are no intruder phases that have been detected. The vibrating sample magnetometer measurements (VSM) have displayed a gradually increasing of the saturation magnetization (Ms) with the annealing temperature, while the coercivity (Hc) and remnance (Mr) have exhibited a maximum value at the annealing temperature 600 °C. The ferromagnetic resonance (FMR) and VSM measurements have clarified the magnetic ordering changing inside the nanocomposites at the system transformation from the as prepared amorphous/hexagonal phase to the spinel/hexagonal phase with increasing annealing temperature. The porosity (P), the anisotropy (K) and the line width (ΔH) calculated parameters have been used to study the agreement between the FMR and VSM magnetic measurements.  相似文献   

20.
Structural, optical and magnetic studies of Co-doped ZnO have been carried out for bulk as well as thin films. The magnetic studies revealed the superparamagnetic nature for low-temperature synthesized samples, indicating the presence of cobalt metallic clusters, and this is supported by the optical studies. For the high-temperature sintered samples one obtains paramagnetism. The optical studies reveal the presence of Co2+ ions in the tetrahedral sites indicating proper doping. Interestingly, the films deposited by laser ablation from the paramagnetic target showed room temperature ferromagnetism. It appears that the magnetic nature of this system is process dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号