首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
By numerically solving the set of basic equations describing black hole accretion flows with low accretion rates, we show that although the dynamical structure of these flows is essentially unaffected by radiative processes in comparison with the case in which the radiation is not considered, the radiative cooling can be more important than the advective cooling in the flow's convection-dominated zone, and this result may have implications to distinguish observationally convection-dominated accretion flows from advection-dominated accretion flows.  相似文献   

2.
It was revealed in our previous studies that there exists a maximal possible accretion rate for slim discs with constant accretion rates because the correctly calculated vertical gravitational force can only gather some limited amount of accreted matter. Here we show that when the accretion rate is not constant and instead decreases with decreasing radius because of outflows, such that the amount of accreted matter is adjusted to be within the allowed limit, global slim disc solutions can be constructed even for the case that accretion rates at large radii apparently exceed the maximal possible value. This result further demonstrates that outflows seem to be unavoidable for accretion flows with large accretion rates at large radii.  相似文献   

3.
顾为民  卢炬甫 《中国物理快报》2004,21(12):2551-2554
We study the problem of standing shocks in viscous disc-like accretion flows around black holes. For the first time we parametrize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K. By providing the global dependence of shock formation in the j- K parameter space, we show that a significant parameter region can ensure solutions with Rankine-Hugoniot shocks; and that the possibilities of shock formation are the largest for inviscid flows, decreasing with increasing viscosity, and ceasing to exist for a strong enough viscosity. Our results support the view that the standing shock is an essential ingredient in black hole accretion discs and is a general phenomenon in astrophysics, and that there should be a continuous change from the properties of inviscid flows to those of viscous ones.  相似文献   

4.
The equilibria of plasma in a dipolar magnetic field under the gravitational influence of a massive body (a star or black hole) and a self gravitating plasma are considered. Analytical solutions are found that can be useful for understanding the physics of plasma flows in accretion disks and star formation.  相似文献   

5.
We construct a family of self-similar solutions to describe radiatively inefficient accretion flows with outflow. We show that outflow has important effects on the dynamical structure of accretion flows. In particular, we prove that outflow can be an effective mechanism of removing the released gravitational energy of accreted gas.  相似文献   

6.
7.
Conclusion Introducing the concept of general co-moving frames (gcmf) in [4] we have argued that it may become useful in a number of hydrodynamical and mhd applications. In [5] using thegcmf technique we have constructed a fully covariant, general-relativistic theory of strongly magnetized collisionless plasma. The approach proved itself to be highly convenient-it allowed us to find new equations of state for such a medium.In the present paper we have considered viscous shear in generalrelativistic astrophysical flows as an another example of the effective usage of orthonormal tetrads method. Namely, we have specified general corotating frames (gcrf)-subclass ofgcmf corresponding to the flows being in purely rotational motion. By means of gcrf we have been able to find expressions for nonzero components of shear tensor and turbulent viscosity tensor for the innermost region of a black hole accretion disc.We think that the method may be useful when considering analogous problems with astrophysical flows of more complicated geometry and/or dynamics. In particular, the method may become efficient for jets in active galactic nuclei (agn) and quasars [13], general-relativistic winds of compact objects [14] and the innermost regions of candidates for galactic black hole accretion discs [15]. To be sure, in some of these problems we have to use a more general set ofgcmf instead ofgcrf. Such problems, however, are beyond the scope of this paper, where we have only outlined the main background of the method and demonstrated its productivity in a simple case of quasi-keplerian accretion flow in a general-relativistic standard accretion disc.  相似文献   

8.
The inconsistency of the energy equation used in the literature is pointed out and a new consistent energy equation is given. With this new energy equation, calculations are made for the limit-cycle behaviors of thermally unstable accretion disks around black holes. From the comparison of our numerical results with those obtained using the inconsistent energy equation, it is found that the inconsistent energy equation undervalues the temperature and overvalues the effective optical depth when the accreted gas becomes effectively optically thin. Thus, it is dangerous if the inconsistent energy equation is used in the studies of very hot and optically thin accretion flows such as advection-dominated accretion flows (ADAFs), and our new energy equation is likely to be a better alternative. Supported by the National Basic Research Program of China (Grant No. 2009CB824800), the National Natural Science Foundation of China (Grant Nos. 10673009 and 10833002), and the Natural Science Foundation of Fujian Province of China (Grant No. V0750001)  相似文献   

9.
Differential rotation occurs in conducting flows in accretion disks and planetary cores. In such systems, the magnetorotational instability can arise from coupling Lorentz and centrifugal forces to cause large radial angular momentum fluxes. We present the first experimental observation of the magnetorotational instability. Our system consists of liquid sodium between differentially rotating spheres, with an imposed coaxial magnetic field. We characterize the observed patterns, dynamics, and torque increases, and establish that this instability can occur from a hydrodynamic turbulent background.  相似文献   

10.
This is a general review Oil the observations and physics of black hole X-ray binaries and microquasars, with the emphasize on recent developments in the high energy regime. The focus is put on understanding the accretion flows and measuring the parameters of black holes in them. It includes mainly two parts: i) Brief review of several recent review article on this subject; ii) Further development on several topics, including black hole spin measurements, hot accretion flows, corona formation, state transitions and thermal stability of standard think disk. This is thus not a regular bottom-up approach, which I feel not necessary at this stage. Major effort is made in making and incorporating from many sources useful plots and illustrations, in order to make this article more comprehensible to non-expert readers. In the end I attempt to make a unification scheme on the accretion-outflow (wind/jet) connections of all types of aecreting BHs of all accretion rates and all BH mass scales, and finally provide a brief outlook.  相似文献   

11.
Turbulent transport of angular momentum is a necessary process to explain accretion in astrophysical disks. Although the hydrodynamic stability of disklike flows has been tested in experiments, results are contradictory and suggest either laminar or turbulent flow. Direct numerical simulations reported here show that currently investigated laboratory flows are hydrodynamically unstable and become turbulent at low Reynolds numbers. The underlying instabilities stem from the axial boundary conditions, affect the flow globally, and enhance angular-momentum transport.  相似文献   

12.

We investigate the effects of various ways of injection of gas at the outer boundary in the numerical simulations of non-viscous accretion flows. We study three models. In Model A, we inject material around the equatorial plane. In Models B and C, fullrange θ injection is used (we employ spherical coordinates). In all three models, the injected material has the same density distribution with polar angle θ. From the equatorial region to the polar regions, angular momentum of the injected material of Model B decreases faster than that in Model C. For all of the models, after a transient episode of infall at the beginning of the simulations, the gas piles up in the equatorial regions outside the black hole and forms a thick torus bounded by a centrifugal barrier. We find that the accretion rates of Models B and C are more than ten times higher than that in Model A. In Model A, there is weak accretion only in the torus and outflows are found on the surface of the torus. In Model B, we find strong inflows on the surface of its torus, and the accretion in the torus is weak. In Model C, strong inflows also occur on the surface of its torus, but the accretion regions are narrower and there are strong outflows in its torus. In all of our models, the time-averaged density, pressure and angular momentum in the equatorial region can be described by a radial power law, with Pr −3/2, Pr −2 and lr 0.

  相似文献   

13.
We demonstrate that a spherical accretion onto astrophysical black holes, under the influence of Newtonian or various post-Newtonian pseudo-Schwarzschild gravitational potentials, may constitute a concrete example of classical analogue gravity naturally found in the Universe. We analytically calculate the corresponding analogue Hawking temperature as a function of the minimum number of physical parameters governing the accretion flow. We study both the polytropic and the isothermal accretion. We show that unlike in a general relativistic spherical accretion, analogue white hole solutions can never be obtained in such post-Newtonian systems. We also show that an isothermal spherical accretion is a remarkably simple example in which the only one information–the temperature of the fluid, is sufficient to completely describe an analogue gravity system. For both types of accretion, the analogue Hawking temperature may become higher than the usual Hawking temperature. However, the analogue Hawking temperature for accreting astrophysical black holes is considerably lower compared with the temperature of the accreting fluid.  相似文献   

14.
In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced "spectral-timing-polarimetry" techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.  相似文献   

15.
The purpose of this research is to investigate the formation of zonal flows that can lead to the enhanced confinement of plasma in tokamaks. We show that zonal flows can be effectively formed by resonance triad interactions in the process of the inverse cascade. We discuss what energy sources are more effective for the formation of zonal flows.  相似文献   

16.
A new model for the accretion flows onto black holes is suggested. The model provides the high-frequency radiation from AGNs. The possibility of plasma retention by the magnetic field is discussed. It is shown that due to development of the flute instability the region where the magnetic and kinetic pressures are equal to each other can be located farther from the central object than the last stable Kepplerian orbit.Published from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 1, pp. 34–38, January, 1996.  相似文献   

17.
This paper presents numerical findings on rapid 2D and 3D granular flows on a bumpy base. In the supported regime studied here, a strongly sheared, dilute and agitated layer spontaneously appears at the base of the flow and supports a compact packing of grains moving as a whole. In this regime, the flow behaves like a sliding block on the bumpy base. In particular, for flows on a horizontal base, the average velocity decreases linearly in time and the average kinetic energy decreases linearly with the travelled distance, those features being characteristic of solid-like friction. This allows us to define and measure an effective friction coefficient, which is independent of the mass and velocity of the flow. This coefficient only loosely depends on the value of the micromechanical friction coefficient whereas the infuence of the bumpiness of the base is strong. We give evidence that this dilute and agitated layer does not result in significantly less friction. Finally, we show that a steady regime of supported flows can exist on inclines whose angle is carefully chosen.  相似文献   

18.
It is shown that large-scale zonal flows (ZFs) can be excited by Reynolds stress of nonlinearly interacting random phase ion-acoustic waves (EIAWs) in a uniform magnetoplasma. Since ZFs are associated with poloidal sheared flows, they can tear apart short scale EIAW turbulence eddies, and hence contribute to the reduction of the cross-field turbulent transport in a magnetized plasma.  相似文献   

19.
Infinitely cyclic cosmology is often frustrated by the black hole problem. It has been speculated that this obstacle in cyclic cosmology can be removed by taking into account a peculiar cyclic model derived from loop quantum cosmology or the braneworld scenario, in which phantom dark energy plays a crucial role. In this peculiar cyclic model, the mechanism of solving the black hole problem is through tearing up black holes by phantom. However, using the theory of fluid accretion onto black holes, we show in this paper that there exists another possibility: that black holes cannot be torn up by phantom in this cyclic model. We discussed this possibility and showed that the masses of black holes might first decrease and then increase, through phantom accretion onto black holes in the expanding stage of the cyclic universe.  相似文献   

20.
The big trip is a cosmological process thought to occur in the future by which the entire universe would be engulfed inside a gigantic wormhole and might travel through it along space and time. In this Letter we discuss different arguments that have been raised against the viability of that process, reaching the conclusions that the process can actually occur by accretion of phantom energy onto the wormholes and that it is stable and might occur in the global context of a multiverse model. We finally argue that the big trip does not contradict any holographic bounds on entropy and information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号