共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper describes a numerical method for the prediction of condensing steam flow within compressible boundary layers. The method is based on a simple stream function technique, which enables straightforward integration of the nucleation and droplet growth equations in a Lagrangian frame of reference. Calculations show how viscous dissipation and reduced expansion rate within a typical boundary layer influence nucleation and growth, leading to droplet radii and size distributions that differ substantially from those predicted in inviscid flow. The impact of condensation on temperature and velocity profiles, and the implications for thermodynamic loss are also considered. 相似文献
2.
Włodzimierz Wróblewski Sławomir DykasAleksandra Gepert 《International Journal of Multiphase Flow》2009
The numerical method for modeling of the transonic steam flows with homogeneous and/or heterogeneous condensation has been presented. The experiments carried out for the Laval nozzles, for 2-D turbine cascades and for a 3-D flow in real turbine were selected to validate an in-house CFD code adjusted to the calculations of the steam condensing flows in complicated geometries. The sensitivity of the condensation model and difficulties in the validation process of the CFD code have been discussed. These difficulties limit the possibilities of verification and improvement of the condensation theory based on the existing experimental data. 相似文献
3.
Ajmal Shah Imran Rafiq Chughtai Mansoor Hameed Inayat 《International Journal of Multiphase Flow》2011
Steam jet pump is the best choice for pumping radioactive and hazardous liquids because it has no moving parts and so no maintenance. However, the physics involved is highly complicated because of the mass, momentum and energy transfer between the phases involved. In this study the characteristics of SJP are studied both experimentally and numerically to pump water using saturated steam. In the experimental study the static pressure, temperature along the length of the steam jet pump and the steam and water flow rates are recorded. The three dimensional numerical study is carried out using the Eulerian two-phase flow model of Fluent 6.3 software and the direct-contact condensation model developed previously. The experimental and CFD results, of axial static pressure and temperature, match closely with each other. The mass ratio and suction lift are calculated from experimental data and it is observed that the mass ratio varies from 10 to 62 and the maximum value of suction lift is 2.12 m under the conditions of the experiment. 相似文献
4.
This paper presents a methodology for modeling slug initiation and growth in horizontal ducts. Transient two-fluid equations are solved numerically using a class of high-resolution shock capturing methods. The advantage of this method is that slug formation and growth in a stratified regime can be calculated directly from the solutions to the flow field differential equations. In addition, by using high-resolution shock capturing methods that do not contain numerical diffusion, the discontinuity generated by slugging in the flow field can be modeled with good accuracy. The two-fluid model is shown to be well-posed mathematically only under certain conditions. Under these circumstances, the two-fluid model is capable of correctly predicting and modeling the flow physics. When ill-posed, an unbounded instability occurs in the flow field solution, and the instability amplitude increases exponentially with decreasing mesh sizes. This work shows that there are three zones associated with slug formation. In addition, long wavelength slugs are shown to initiate from short wavelength waves. These short waves are generated at the interface of the two phases by the Kelvin-Helmholtz hydrodynamic instability. The results obtained through numerical modeling show good agreement with experimental results. 相似文献
5.
M.R. Ansari 《Fluid Dynamics Research》1998,22(6):741-344
Thermalhydraulic transient phenomena of a steam-water two-phase flow was calculated numerically in order to investigate the onset of slugging from a stratified flow in a horizontal duct. Conservation equations were solved by the finite difference method using a two-phase flow analyzer ‘MINCS’. The analysis was performed to investigate the initiation of slugging with and without phase change, or condensation. The present instability criteria for the onset of slugging with no condensation agreed well with that of the Mishima–Ishii relation while it was much lower than that defined by the Kelvin–Helmholtz instability criteria. However, as the temperature difference between phases increased, steam velocity became higher for the onset of slugging condition. The characteristics of flow reversal and water hammering which were the consequences of slugging with condensation, were investigated and described. It is expected that this modeling could be well applied to complicated thermalhydraulic phenomena accompanied by flow reversal and water hammering in power plants. 相似文献
6.
Xin-Zhuang Wu Jun-Jie Yan Shu-Feng Shao Yan Cao Ji-Ping Liu 《International Journal of Multiphase Flow》2007,33(12):1296-1307
The condensation of supersonic steam jet submerged in the quiescent subcooled water was investigated experimentally. The results indicated that the shape of steam plume was controlled by the steam exit pressure and water temperature. Six different shapes of steam plume were observed under the present test conditions. Their distribution as a function of the steam exit pressures and water temperatures was given. As the steam mass velocity and water temperature increase, the measured maximum expansion ratio and dimensionless penetration length of steam plume were in the ranges of 1.08–1.95 and 3.05–13.15, respectively. The average heat transfer coefficient of supersonic steam jet condensation was found to be in the range of 0.63–3.44 MW/m2K. An analytical model of steam plume was found and the correlations to predict the maximum expansion ratio, dimensionless penetration length and average heat transfer coefficient were also investigated. 相似文献
7.
D. Barnea 《International Journal of Multiphase Flow》1991,17(6):705-716
The differential form of the “two-fluid model” for annular flow, neglecting surface tension, is ill-posed, and it is not suited for examining the stability of the steady-state solutions with respect to the average film thickness. It is shown here that a discrete (difference) representation of the two-fluid model may lead to an appropriate criterion for the stability of the steady-state solutions. Exactly the same criterion is obtained from the requirement that the kinematic waves will propagate in the downstream direction. The suggested discrete form of the “two-fluid model” is used to perform transient simulation and for examining the system response to finite disturbances. 相似文献
8.
D.S. Sankar 《International Journal of Non》2009,44(4):337-351
The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral region of plasma as a Newtonian fluid. The resulting non-linear implicit system of partial differential equations is solved using perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio, amplitude, pulsatile Reynolds number ratio and peripheral layer thickness are discussed. It is observed that the velocity distribution and flow rate decrease, while, the wall shear, width of the plug flow region and longitudinal impedance increase when the yield stress increases. It is also found that the velocity increases, but, the longitudinal impedance decreases when the thickness of the peripheral layer increases. The wall shear stress decreases non-linearly, while, the longitudinal impedance increases non-linearly when the catheter radius ratio increases. The estimates of the increase in the longitudinal impedance are considerably lower for the present two-fluid model than those of the single-fluid model. 相似文献
9.
Flow with evaporation in parallel lines with common inlet and outlet headers may result in an uneven flow distribution among the parallel pipes. The prediction of the flow rate distribution in steady state as well as under transient conditions was based on simplified models. In this paper a more accurate time dependent model based on the temporal-local flow pattern in the pipe is presented. The pipe is subdivided into numerical sections and the calculation of the pressure drop in each cell is based on mechanistic models that are specific for the flow pattern in the cell. 相似文献
10.
In this paper, we study the continuum modeling of traffic dynamics for two-lane freeways. A new dynamics model is proposed,
which contains the speed gradient-based momentum equations derived from a car-following theory suited to two-lane traffic
flow. The conditions for securing the linear stability of the new model are presented. Numerical tests are carried out and
some nonequilibrium phenomena are observed, such as small disturbance instability, stop-and-go waves, local clusters and phase
transition.
The project supported by the National Natural Science Foundation of China (70521001) The English text was polished by Yunming
Chen. 相似文献
11.
The effect of wavelength and relative velocity on the disturbed interface of two‐phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two‐dimensional flow field and the governing Navier–Stokes equations in laminar regime are solved. Finite volume method together with non‐staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one‐dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two‐phase stratified flow behavior more precisely than one‐dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
A transition from interacting continua to a disperse debris flow is numerically simulated using a multi-velocity formulation based on the ensemble phase average. The numerical calculation takes advantage of the recently developed dual domain material point method, which overcomes numerical instabilities, numerical diffusion and mesh distortion issues encountered in other numerical methods in cases of large material deformations. Comparisons with experiments show that the difference between the average of the velocity gradient and the gradient of the average velocity is important. To consider the transition from a continuum motion to a disperse flow, a model for this difference is expressed in terms of the effective plastic strain and the critical strain of the material. Although the model results in excellent comparisons to the experimental results, more work to study the difference and the model is needed for broader applications. 相似文献
13.
Results are presented of experiments conducted in a two-dimensional duct carrying a supersonic flow of condensing steam. The measurements comprised static pressure readings along the profiled surfaces of the duct and ‘fog’ droplet sizing using a light attenuation technique. Three sets of results for dry supercooled and nucleating steam flows are presented, are are compared with the predictions of a two-dimensional numerical calculation method. 相似文献
14.
An efficient Euler and full Navier–Stokes solver based on a flux splitting scheme is presented. The original Van Leer flux vector splitting form is extended to arbitrary body-fitted co-ordinates in the physical domain so that it can be used with a finite volume scheme. The block matrix is inverted by Gauss–Seidel iteration. It is verified that the often used reflection boundary condition will produce incorrect flux crossing the wall and cause too large numerical dissipation if flux vector splitting is used. To remove such errors, an appropriate treatment of wall boundary conditions is suggested. Inviscid and viscous steady transonic internal flows are analysed, including the case of shock-induced boundary layer separation. 相似文献
15.
In the present paper, the Fractional Step method usually used in single fluid flow is here extended and applied for the two-fluid model resolution using the finite volume discretization. The use of a projection method resolution instead of the usual pressure-correction method for multi-fluid flow, successfully avoids iteration processes. On the other hand, the main weakness of the two fluid model used for simulations of free surface flows, which is the numerical diffusion of the interface, is also solved by means of the conservative Level Set method (interface sharpening) (Strubelj et al., 2009). Moreover, the use of the algorithm proposed has allowed presenting different free-surface cases with or without Level Set implementation even under coarse meshes under a wide range of density ratios. Thus, the numerical results presented, numerically verified, experimentally validated and converged under high density ratios, shows the capability and reliability of this resolution method for both mixed and unmixed flows. 相似文献
16.
17.
R.I. Crane 《International Journal of Heat and Fluid Flow》1982,3(1):13-20
The numerical turbulent coalescence/deposition model of Crane and Williams has been used to indicate likely trends in the development of drop size distribution and entrained water flow rate in the cross-over pipes of a nuclear wet steam turbine. Large increases in mean drop diameter have been shown to be possible, the results being very sensitive to the width of the initial size distribution, the entrained wetness fraction and the turbulence intensity. Deposition rate was also found to be strongly dependent on turbulence intensity, but inertial deposition onto and re-entrainment from the turning vanes of a bend did not significantly influence subsequent coalescence and turbulent deposition rates in the single example computed 相似文献
18.
The application of a stabilized space–time finite element formulation to problems involving fluid–structure interactions and two-fluid interfaces is discussed. Two sample problems are presented and the method is validated by comparison with a test problem. © 1997 John Wiley & Sons, Ltd. 相似文献
19.
Regularization models for the turbulent stress tensor are applied to mixing and separated boundary layers. The Leray and the NS-α models in large-eddy simulation (LES) are compared to direct numerical simulation (DNS) and (dynamic) eddy-viscosity models. These regularization models are at least as accurate as the dynamic eddy-viscosity model, and can be derived from an underlying dynamic principle. This allows one to maintain central transport properties of the Navier-Stokes equations in the model and to extend systematically toward complex applications. The NS-α model accurately represents the small-scale variability, albeit at considerable resolution. The Leray model was found to be much more robust, allowing simulations at high Reynolds number. Leray simulations of a separated boundary layer are shown for the first time. The strongly localized transition to turbulence that arises under a blowing and suction region over a flat plate was captured accurately, quite comparable to the dynamic model. In contrast, results obtained with the Smagorinsky model, either with or without Van Driest damping, yield considerable errors, due to its excessive dissipation. 相似文献
20.
Keh-Ming Shyue 《Shock Waves》2006,15(6):407-423
The aim of this paper is to describe a simple Eulerian interface-capturing approach for the efficient numerical resolution of a hybrid barotropic and non-barotropic two-fluid flow problem in more than one space dimension. We use the compressible Euler equations as a model system with the thermodynamic property of each of the barotropic and non-barotropic fluid components characterized by the Tait and Noble–Abel equations of state, respectively. The algorithm is based on a volume fraction formulation of the equations together with an extended equation of state that is devised to give an approximate treatment for the mixture of more than one fluid component within a grid cell. A standard high-resolution wave propagation method is employed to solve the proposed two-fluid model with the dimensional-splitting technique incorporated in the method for multidimensional problems. Several numerical results are presented in one and two space dimensions that show the feasibility of the algorithm as applied to a reasonable class of practical problems without the occurrence of any spurious oscillation in the pressure near the smeared material interfaces. This includes, in particular, solutions for a study on the variation of the jet velocity with the incident shock pressure arising from the collapse of an air cavity in water under a shock wave. 相似文献