首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here we shall present a linear stability analysis of a laminar, stratified flow of two superposed fluids which are a clear liquid and a suspension of solid particles. The investigation is based upon the assumption that the concentration remains constant within the suspension layer. Even for moderate flow-rates the base-state results for a shear induced resuspension flow justify the latter assumption. The numerical solutions display the existence of two different branches that contribute to convective instability: long and short waves which coexist in a certain range of parameters. Also, a range exists where the flow is absolutely unstable. That means a convectively unstable resuspension flow can be only observed for Reynolds numbers larger than a lower, critical Reynolds number but still smaller than a second critical Reynolds number. For flow rates which give rise to a Reynolds number larger than the second critical Reynolds number, the flow is absolutely unstable. In some cases, however, there exists a third bound beyond that the flow is convectively unstable again. Experiments show the same phenomena: for small flow-rates short waves were usually observed but occasionally also the coexistence of short and long waves. These findings are qualitatively in good agreement with the linear stability analysis. Larger flow-rates in the range of the second critical Reynolds number yield strong interfacial waves with wave breaking and detached particles. In this range, the measured flow-parameters, like the resuspension height and the pressure drop are far beyond the theoretical results. Evidently, a further increase of the Reynolds number indicates the transition to a less wavy interface. Finally, the linear stability analysis also predicts interfacial waves in the case of relatively small suspension heights. These results are in accordance with measurements for ripple-type instabilities as they occur under laminar and viscous conditions for a mono-layer of particles.  相似文献   

2.
The transition from smooth to wavy stratified flow is studied for various pipe inclination angles with the aim to contribute to the realistic modeling and simulation of long distance two-phase pipe flow. The influence of the liquid flow field on interfacial structure is studied through local axial velocity measurements in the liquid phase in conjunction with other liquid layer characterization experiments. Observations based on fast-video recordings, are used to identify the main patterns of wave evolution. Liquid layer thickness time records are acquired using a parallel wire conductance technique from which mean layer thickness, RMS and power spectra of the fluctuations, as well as wave celerities are calculated. Laser Doppler Anemometry (LDA) is employed to investigate the flow structure in the thin liquid layer both with and without interfacial shear induced by a co-current gas flow. The results reveal the influence of the liquid flow field development on the interfacial structure. In particular, the new data of axial velocity profiles and liquid layer characteristics suggest that the onset of the interfacial waves is strongly affected by the liquid flow structure, possibly by the laminar to turbulent transition within the layer.  相似文献   

3.
The wall void peaking distribution observed in an upward turbulent bubbly boundary layer along a flat plate is generated by bubbles that move towards the plate, come into contact with the wall and then slide along it. This transverse ‘migration’ has been studied using flow visualization, high speed video and particle tracking techniques to measure the trajectories of mono-disperse air bubbles at very low void fractions. Investigations have been performed at four Reynolds numbers in the range 280 < Reθ < 3000, covering both the laminar and turbulent regimes, with mono-disperse bubbles of mean equivalent diameter between 2 mm and 6 mm. Lagrangian statistics calculated from hundreds of trajectories show that the migration only occurs in the turbulent regime and for bubble diameters below some critical value: 3.5 mm < deqcrit < 4 mm. Above this size (We > 3), the interface deformation is such that bubbles do not remain at the wall, even when they are released at the surface. Also, bubble migration is shown to be non-systematic, to have a non-deterministic character in the sense that trajectories differ significantly, to increase with Reynolds number and to take place on a short time scale. A series of experiments with isolated bubbles demonstrates that these results are not influenced by bubble–bubble interactions and confirm that two-way coupling in the flow is limited. Flow visualizations show that the migration originates with the capture of bubbles inside the large turbulent structures of the boundary layer (‘bulges’). The bubbles begin to move towards the wall as they cross these structures, and the point at which they reach the wall is strongly correlated with the position of the deep ‘valleys’ which separate the turbulent ‘bulges’. The analysis of the mean Lagrangian trajectories of migrating bubbles confirms these observations. Firstly, the average time of migration calculated from these trajectories coincides with the mean transit time of the bubbles across the structures. Secondly, once the trajectories have been scaled by this transit time and the boundary layer thickness δ, they all have the same form in the region y/δ < 0.4, independent of the Reynolds number.  相似文献   

4.
Under the assumption that the boundary layer approximation for the original equations is valid, we show the possibility of the existence of progressive waves on the surface of a vertically flowing film when surface tension is neglected. From the system of equations obtained for a thin layer of viscous liquid flowing down an inclined plane, one equation for perturbations of a thin film follows. Steady solutions of this equation allow periodic discontinuous solutions of the roll-wave type.Translated from Zhurnal Prikladnoi Mekhaniki i Teknicheskoi Fiziki, No. 2, pp. 109–113-March–April, 1973.  相似文献   

5.
Wave fronts admitting discontinuities only in the derivatives of the dependent variables are by convention called ‘weak’ waves. For the special case of discontinuous first-order derivatives, the fronts are customarily called ‘acceleration’ waves. If the governing equations are quasi-linear, then the weak waves are necessarily characteristic surfaces. Sometimes, these surfaces are also referred to as ‘singular surfaces’ of order r ? 1, where r stands for the order of the first discontinuous derivatives. This latter approach is adopted in this paper and applied to governing equations which form a set of first-order quasi-linear hyperbolic equations. When these equations are written in terms of singular surface coordinates, simplification occurs upon differencing equations written on the front and rear sides of the surface: a set of algebraic (‘connection’) equations is generated for the discontinuities in the normal derivatives of the dependent variables across the surface. When a similar operation is performed on the governing equations written for second-order derivatives, a set of first-order differential (‘transport’) equations is generated.  相似文献   

6.
We consider the evolution of small three-dimensional perturbations of an accelerated thin liquid layer. The analytical solutions obtained correspond to various types of initial perturbations: in the form of a layer, in the initial velocities, and in the thickness of the layer. Depending on the dimensionless parameters which characterize the initial data, the perturbations can increase exponentially with time, remain bounded, and change the phase. Institute of Experimental Physics, Sarov 607200. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 3–9, January–February, 1999.  相似文献   

7.
The flow of a liquid in thin layers is one of the hydrodynamic problems of chemistry and heat engineering. The large surface area of films and their small thickness make it possible to accelerate thermal, diffusive, and chemical processes at the gas-liquid boundary.Theoretical studies of liquid flow in a vertical descending thin layer are presented in [1–4]. In this paper we study ascending wave flows of a liquid in a thin vertical layer in contact with a gas, i.e., flows in the direction opposite the action of the force due to gravity, with account for the action of the gas on the liquid surface. Such motions are encountered when oil is extracted from strata that are saturated with gas. At some distance from the stratum the oil and gas separate: the gas travels at high velocity inside the pipe, occupying a considerable portion of the pipe, and the liquid is displaced toward the pipe walls, forming a thin film. In certain cases a wave-like interface develops between the oil and gas that travels with a velocity greater than that of the liquid but less than the average gas velocity. Similar phenomena are observed in high velocity mass exchangers.We examine the effect of the gas for both laminar and turbulent flow.Studies that neglect the effect of the gas flow on the liquid show that for waves on the film surface whose lengths are considerably longer than the average thickness of the layer, the liquid motion in the film is described by boundary layer equations in which account is taken of the mass force, i.e., the force due to gravity. With some approximation, we can assume that in accounting for the effect of the gas on the liquid the liquid flow is described by these same equations.  相似文献   

8.
Microbubble and air film methods are believed to be applicable to skin friction reduction in ships. Small bubbles are dispersed into the turbulent boundary layer in the former case, and wide air layers cover the wall surface in the latter case. Previous studies did not specifically address the intermediate case between the microbubble and air film conditions. This study is concerned with the possibility and mechanism of drag reduction using relatively large air bubbles compared to the boundary layer thickness in a horizontal turbulent channel flow. The relationship between local skin friction and the bubble’s interfacial structure is investigated by synchronizing the measurement of wall-shear stress with the image acquisition of bubbles. The bubble sizes range from 2 to 90 mm approximately. As a result, a negative correlation between the local skin friction and the local void fraction is confirmed by the time-resolved measurement. A new observation is the fact that the local skin friction decreases drastically in the rear part of individual large bubbles, and rapidly increases after the bubble’s rear interface passes. This characteristic underlies the bubble-size dependency of the average skin friction in the intermediate bubble size condition.  相似文献   

9.
After L. D. Landau's work [1] on the stability of normal burning of liquid explosives, many experimental studies of this phenomenon, e. g., [2, 3], were published. In this paper, on the basis of Landau's theory, we investigate the geometry of the perturbations which develop on the surface of the liquid explosive in a vessel of circular cross section and consider the influence of vessel diameter on burning stability. Results of an experimental observation of the geometry of the liquid surface are also presented for developed turbulent combustion in a circular cylindrical tube. The calculation was based on the usual assumptions that the chemical reaction of combustion proceeds in a thin layer of vapor over the plane (meniscus neglected) surface of the inviscid liquid explosive.  相似文献   

10.
We study a non-linear vibration isolation system capable of (a) isolating its upper part (the ‘machine’) from periodic disturbances generated at its base; and (b) simultaneously isolating its base from periodic disturbances generated at the level of the machine. By making use of essentially non-linear (e.g. non-linearizable) stiffness elements we completely eliminate resonances close to linearized modes, thus achieving vibration isolation over an extended frequency range. Instead, we prove the existence of branches of localized steady state motions in the frequency domain. Indeed, these localized forced motions are principally responsible for fulfilling the dual mode vibration isolation objective of this work. The method of analysis followed is based on complexification and separation of the dynamics into ‘slow’ varying and ‘fast’-varying parts. Direct numerical simulations confirm the analytical predictions. An analytical method is then developed for determining the placement of the localized branches in the frequency domain as the system parameters vary; this permits the design of the vibration isolation system for best performance in a specified frequency range. The vibration isolation performance achieved by the non-linear system considered has no counterpart in linear theory.  相似文献   

11.
We consider the problem of gravitational instability (Rayleigh–Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the “break-away” of the vapor layer growing at the contact interface due to development of the Rayleigh–Taylor instability on the upper liquid–gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water-n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh–Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid–gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.  相似文献   

12.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

13.
The study considers emission of Tollmien—Schlichting waves by a vibrator mounted on a plate with a viscous incompressible fluid flowing round it. It is shown that by changing the shape of a membrane working at a supercritical frequency, it is possible not only to reduce greatly the amplitude of the forced oscillations, but also to achieve their complete degeneration. This possibility opens the door to the suppression of an already formed Tollmien—Schlichting wave by a vibrator with specially chosen parameters. This type of equipment makes it possible to suppress perturbations in a laminar boundary layer and delay its transition to the turbulent state.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 20–26, March–April, 1987.The authors are grateful to the referee V. A. Buchin for a useful observation expressed in the course of preparation of the article for the press.  相似文献   

14.
Evolution of convective structures in a thin layer of an evaporating liquid (ethanol) located under a turbulent boundary layer of an airflow is studied experimentally and theoretically. Evolution of the structures is examined under conditions of an increased flow velocity. A transition is found from convective cells formed in the absence of the flow to convective rolls elongated in the streamwise direction. The theoretical analysis is performed within a two-dimensional model of the flow in the liquid layer. The boundary conditions on the liquid surface are obtained with the use of self-similar solutions for mean fields in the airflow. The onset and evolution of a periodic system of rolls are simulated numerically. Theoretical conclusions are compared with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 3–14, July–August, 2007.  相似文献   

15.
An efficient hybrid uncorrelated wall plane waves–boundary element method (UWPW-BEM) technique is proposed to predict the flow-induced noise from a structure in low Mach number turbulent flow. Reynolds-averaged Navier-Stokes equations are used to estimate the turbulent boundary layer parameters such as convective velocity, boundary layer thickness, and wall shear stress over the surface of the structure. The spectrum of the wall pressure fluctuations is evaluated from the turbulent boundary layer parameters and by using semi-empirical models from literature. The wall pressure field underneath the turbulent boundary layer is synthesized by realizations of uncorrelated wall plane waves (UWPW). An acoustic BEM solver is then employed to compute the acoustic pressure scattered by the structure from the synthesized wall pressure field. Finally, the acoustic response of the structure in turbulent flow is obtained as an ensemble average of the acoustic pressures due to all realizations of uncorrelated plane waves. To demonstrate the hybrid UWPW-BEM approach, the self-noise generated by a flat plate in turbulent flow with Reynolds number based on chord Rec = 4.9 × 105 is predicted. The results are compared with those obtained from a large eddy simulation (LES)-BEM technique as well as with experimental data from literature.  相似文献   

16.
The frequencies and damping coefficients of gravitational-capillary waves are found for a wide range of controlling dimensionless parameters. The transition to the limiting cases of deep water and an ideal fluid is analyzed. In the parameter plane, the boundary between the regions of oscillatory and aperiodic perturbations is determined and the region of weak damping is indicated. The equilibrium state of thin liquid films with account for the Van der Waals forces is considered and the dispersion equation for the capillary-Van der Waals surface waves is obtained. For a suitably chosen frequency scale, this equation is the same as that for gravitational-capillary waves. The physical conditions making it possible to observe capillary and Van der Waals waves in thin fluid layers are estimated. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 156–164, July–August, 2000.  相似文献   

17.
The Rapid-Distortion-Theory-based analysis proposed by Fernando and Hunt [1] is extended to study the nature of turbulence in and around a density interface sandwiched between turbulent layers with dissimilar properties. It is shown that interfacial motions consist of low-frequency, resonantly excited, nonlinear internal waves and high-frequency, linear internal waves driven by background turbulence. Based on the assumptions that (i) all resonant waves and some nonresonant waves having frequencies close to the resonant frequencies grow rapidly, break, and cause interfacial mixing, (ii) the spectral amplitude of the vertical velocity in the wave-breaking regime is constant, and (iii) kinetic energy is equipartitioned between linear and nonlinear breaking wave regimes, the r.m.s. vertical velocity at the interface and the turbulent kinetic energy flux into the interface are calculated. The migration velocity of the interface is calculated using the additional assumption that the buoyancy flux into a given turbulent layer is a fixed fraction of the turbulent kinetic energy flux supplied to the interface by the same layer. The calculations are found to be in good agreement with the entrainment data obtained in previous laboratory experiments in the parameter regime where the interface is dominated by internal wave dynamics. Received 23 July 1997 and accepted 8 January 1999  相似文献   

18.
Accurate measurements of the interfacial wave structure of upward annular two-phase flow in a vertical pipe were performed using a laser focus displacement meter (LFD). The purpose of this study was to clarify the effectiveness of the LFD for obtaining detailed information on the interfacial displacement of a liquid film in annular two-phase flow and to investigate the effect of axial distance from the air–water inlet on the phenomena. Adiabatic upward annular air–water flow experiments were conducted using a 3 m long, 11 mm ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart in the pipe. The axial distances from the inlet (z) normalized by the pipe diameter (D) varied over z/D = 50–250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from ReG = 31,800 to 98,300 for the gas phase and ReL = 1050 to 9430 for the liquid phase. Using the LFD, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreasing film thickness and passing frequency, persisted until the end of the pipe, which means that the flow might never reach the fully developed state. The minimum film thickness decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman’s three-layer model. A correlation is proposed between the minimum film thickness obtained in relation to the interfacial shear stress and the Reynolds number of the liquid.  相似文献   

19.
This report covers experimental studies and numerical modelling of interfacial instability in the bi-layer coextrusion flow of two low-density polyethylene melts. Melt streams are converged at an angle of 30° to a common die land. Melt stream confluence was observed in two coextrusion die arrangements. In one die design, which we term ‘bifurcated’ the melt stream is split by a divider plate in the die after being delivered from a single extruder. In the other design melt streams are delivered to a die from two separate extruders. In each die design melt flow in the confluent region and die land to the die exit was observed through side windows of a visualization cell. Velocity ratios of the two melt streams were varied and layer thickness ratios producing wave type interfacial instability determined for each melt for a variety of flow conditions. Stress and velocity fields in the coextrusion arrangements were quantified using stress birefringence and particle image velocimetry techniques.  相似文献   

20.
Using the Navier-Stokes equation the stability of a layer of viscous liquid flowing down a solid surface under gravity is studied in the linear formulation. The effect of surface tension and the inclination of the solid surface on the limits of stability are examined also. Curves are calculated for the neutral stability with respect to two types of perturbations — surface waves and shear waves.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskol Fiziki, No. 2, pp. 172–176, March–April, 1975.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号