首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A map for the determination of flow pattern for two-phase flow of gas and non-Newtonian liquid in the vertical pipe has been presented. Our own experimental data confirm applicability of such a map.  相似文献   

2.
Long liquid slugs reaching a length of several hundreds of pipe diameter may appear when transporting gas and liquid in horizontal or nearly horizontal pipelines. These long slugs may cause system vibration, separator flooding, and operational problems for the downstream processing facilities. Although mainly short hydrodynamic slugs have been observed in offshore gas and oil production fields over the past years, the appearance of the long slugs is becoming more common as many production fields are now more mature and reach end of field life, giving reduced production rates and reduced operational pressure.  相似文献   

3.
4.
The study considers the prediction of the entrained liquid fraction in adiabatic gas–liquid annular two-phase flow in vertical pipes. Nine empirical correlations have been tested against an experimental data bank drawn together in this study containing 1504 points for 8 different gas–liquid combinations and 19 different tube diameters from 5.00 mm to 57.1 mm. The correlation of Sawant, Ishii and Mishima and the one of Oliemans, Pots and Trompé were found to best reproduce the available data. A new correlating approach, derived from both physical intuition and dimensional analysis and capable of providing further physical insight into the liquid film atomization process, was proposed and worked better than any of the existing methods. This new correlation is based on the core flow Weber number that is also a controlling dimensionless group in determining the wall shear stress and associated frictional pressure gradient of annular flows.  相似文献   

5.
A two-fluid model in the Eulerian–Eulerian framework has been implemented for the prediction of gas volume fraction, mean phasic velocities, and the liquid phase turbulence properties for gas–liquid upward flow in a vertical pipe. The governing two-fluid transport equations are discretized using the finite volume method and a low Reynolds number kɛ model is used to predict the turbulence field for the continuous liquid phase. In the present analysis, a fully developed one-dimensional flow is considered where the gas volume fraction profile is predicted using the radial force balance for the bubble phase. The current study investigates: (1) the turbulence modulation terms which represent the effect of bubbles on the liquid phase turbulence in the kε transport equations; (2) the role of the bubble induced turbulent viscosity compared to turbulence generated by shear; and (3) the effect of bubble size on the radial forces which results in either a center-peak or a wall-peak in the gas volume fraction profiles. The results obtained from the current simulation are generally in good agreement with the experimental data, and somewhat improved over the predictions of some previous numerical studies.  相似文献   

6.
This article presents an assessment of the accuracy of gas flow rate measurement in gas–liquid pipe flows by cross-correlating dual wire-mesh sensor signals. The differences between the estimated and the actual gas superficial velocities in different flow regimes were analyzed. It was demonstrated that this gas flow rate measurement method is susceptible to significant systematic errors, some of which are inherent to the use of cross-correlation and others which are specific to wire-mesh sensors. It was concluded that this method would be accurate only for flow conditions within narrow ranges.  相似文献   

7.
This paper proposes a new method for equal quality distribution of gas–liquid two-phase flow by partial separate-phase distribution with a dual-header distributor. The upper and liquid (lower) headers are interconnected with five vertical downward arms. A gas–liquid two-phase mixture enters the distributor from the upper header where most of the liquid of the mixture is removed through the downward arms into the liquid header. Hence, firstly, the remaining gas-rich fluid can be uniformly distributed into the outlet branches, and then secondly, the liquid collected in the liquid header can be uniformly re-distributed into the individual outlet branches. Because both distribution processes are conducted in the condition of single or near single-phase flow, mal-distribution of the two-phase flow is essentially eliminated, and a satisfactory equal quality distribution of gas–liquid two-phase flow is reached. Experiments were conducted in an air–water two-phase flow test loop. The inner diameter of the inlet pipe was 60 mm, the superficial velocity ranges of gas and liquid were 3–32 m/s and 0.02–0.17 m/s respectively, and the quality ranged from 0.02 to 0.44. The flow pattern in the inlet pipe included stratified flow, wavy stratified, slug flow, and annular flow. The experimental results showed that this new method could significantly improve the distribution performance of the two-phase flow. The maximum quality deviation between each outlet branch and the inlet pipe is less than ±1% under the conditions of stratified, wavy stratified and slug flows in the upper header, and less than ±5% in annular flow.  相似文献   

8.
9.
The study considers algebraic turbulence modeling in adiabatic gas–liquid annular two-phase flow. After reviewing the existing literature, two new algebraic turbulence models are proposed for both the liquid film and the droplet laden gas core of annular two-phase flow. Both turbulence models are calibrated with experimental data taken from the open literature and their performance critically assessed. Although the proposed turbulence models reproduce the key parameters of annular flow well (average liquid film thickness and pressure gradient) and the predicted velocity profiles for the core flow compare favorably with available core flow velocity measurements, a more accurate experimental database is required to further improve the models accuracy and range of applicability.  相似文献   

10.
Slug flow is commonly observed in gas production offshore fields. At high operation pressure only short hydrodynamic slugs are observed. However, as the offshore fields become older, the operation pressure becomes lower and long slugs may form. At near atmospheric pressures the long slugs may reach a size of 500 pipe diameters or more. Such slugs can cause serious operational failures due to the strong fluctuating pressure. Identifying the operation pressure conditions at which the long slugs appear, may reduce or prevent these negative effects.  相似文献   

11.
Pipelines conveying a multiphase mixture must withstand the cyclic induced stresses that occur due to the alternating motion of gas pockets and liquid slugs. Few previous studies have considered gas–liquid slug flow and the associated fluid–structure interaction problems. In this study, experimental and numerical techniques were adopted to simulate and analyze the two-phase slug flow and the associated stresses in the pipe structure. In the numerical simulation, a one-way coupled fluid–structure framework was developed to explore the slug flow interaction with a horizontal pipe assembly under various superficial gas and liquid velocities. A modified Volume of Fluid and finite element methods were utilized to model the fluid and structure domains. The file-based coupling technique was adopted to execute the coupling mechanism. By contrast, slug characteristics were measured experimentally, while Bi-axial strain gauges were used to capture time-varying strain signals. Excellent agreements between the predicted and measured stress results were achieved with a maximum error of 10.2 %. It was found that at constant superficial liquid velocity, the maximum induced stresses on the pipe wall increased with increasing the slug length and slug velocity. While for the slug frequency, the maximum principal stresses decreased with increasing the slug frequency.  相似文献   

12.
A conductance wire mesh sensor system has been employed on a vertical 67 mm diameter pipe with the up flow of air and water mixtures. The measuring system provides time and cross-sectionally resolved information about the spatial distribution of the phases. Statistical information can be extracted and used to identify flow patterns. The fully resolved data has revealed a hitherto unreported structure has been seen in churn flow which could be linked to the wisps in wispy-annular flow.  相似文献   

13.
A new model coupling two basic models, the model based on interface tracking method and the two-fluid model, for simulating gas–liquid two-phase flow is presented. The new model can be used to simulate complex multiphase flow in which both large-length-scale interface and small-length-scale gas–liquid interface coexist. By the physical state and the length scale of interface, three phases are divided, including the liquid phase, the large-length-scale-interface phase (LSI phase) and the small-length-scale-interface phase (SSI phase). A unified solution framework shared by the two basic models is built, which makes it convenient to perform the solution process. Based on the unified solution framework, the modified MCBA–SIMPLE algorithm is employed to solve the Navier–Stokes equations for the proposed model. A special treatment called “volume fraction redistribution” is adopted for the special grids containing all three phases. Another treatment is proposed for the advection of large-length-scale interface when some portion of SSI phase coalesces into LSI phase. The movement of the large-length-scale interface is evaluated using VOF/PLIC method. The proposed model is equivalent to the two-fluid model in the zone where only the liquid phase and the SSI phase are present and to the model based on interface tracking method in the zone where only the liquid phase and the LSI phase are present. The characteristics of the proposed model are shown by four problems.  相似文献   

14.
Gas–Liquid two phase co-current flow in a vertical riser with an internal diameter of 127 mm was investigated in the churn flow pattern. This paper presents detailed experimental data obtained using a Wire Mesh Sensor. It shows that the most obvious features of the flow are huge waves travelling on the liquid film. Wisps, large tendrils of liquid and the product of incomplete atomisation, which had previously detected in smaller diameter pipes, have also been found in the larger diameter pipe employed here. The output of the Wire Mesh Sensor has been used to determine the overall void fraction. When examined within a drift flux framework, it shows a distribution coefficient of ∼1, in contrast to data for lower gas flow rates. Film thickness time series extracted from the Wire Mesh Sensor output have been examined and the trends of mean film thickness, that of the base film and the wave peaks are presented and discussed. The occurrence of wisps and their frequencies have been quantified.  相似文献   

15.
Gas–liquid slug flow occurs over a wide range of phase flow rates and in a variety of practical applications during gas–liquid two-phase flows. The range of slug flow increases further in narrow pipes (<0.0254 m), undulated pipelines, riser tube, etc. On the other hand, the past literature shows that slug flow is rarely observed for liquid–liquid cases. In the present study, an interest was felt to investigate whether liquid–liquid slug flow occurs in situations known for excessive slugging in gas–liquid cases. For this, experiments have been performed in narrow (0.012 m ID) vertical and horizontal pipes and an undulated pipeline of 0.0254 m internal diameter where the V-shaped undulation comprises of an uphill and a downhill section between two horizontal pipes. The studies have been performed for both peak and valley orientation of the undulation. Kerosene and water have been selected as the test fluids and the optical probe technique has been used to supplement visual observations especially at higher flow rates. The studies have revealed the existence of the slug flow pattern over a wide range of phase flow rates in all the three geometries. Interestingly, it has been noted that the introduction of an undulation induces flow patterns which bear a closer resemblance to gas–liquid flows as compared to liquid–liquid flows through a horizontal pipe of 0.0254 m diameter.  相似文献   

16.
An experimental investigation was carried out on viscous oil–gas flow characteristics in a 69 mm internal diameter pipe. Two-phase flow patterns were determined from holdup time-traces and videos of the flow field in a transparent section of the pipe, in which synthetic commercial oils (32 and 100 cP) and sulfur hexafluoride gas (SF6) were fed at oil superficial velocities from 0.04 to 3 m/s and gas superficial velocities from 0.0075 to 3 m/s.  相似文献   

17.
The use of the stratified flow momentum balance for the deduction of interfacial and liquid wall shear stresses from experimental measurements is examined. A systematic error analysis is applied to the governing equations using the principle of maximum uncertainty. A series of air–water experiments were conducted in 50 and 80 mm diameter pipes, in which gas pressure drop, liquid height and gas wall shear stress were measured. A framework for the correlation of the deduced shear stresses is proposed from the experimental measurements. The uncertainty analysis is used to show that the definition of mean liquid height does not significantly influence the overall results. The development of empirical equations based on such methods may lead to total uncertainties of up to 40%, irrespective of accuracy of the experimental data or the appropriateness of the correlating technique. Comparisons with state-of-the-art correlations for the liquid wall and interfacial friction factor data showed even larger discrepancies between measurement and prediction.  相似文献   

18.
The particle fluctuation velocities of a horizontal self-excited gas–solid two-phase pipe flow with soft fins near MPD (minimum pressure drop) air velocity are first measured by high-speed PIV in the acceleration and fully-developed regimes. Then orthogonal wavelet multi-resolution analysis and power spectrum are used to reveal multi-scale characteristics of particle fluctuation velocity. It is observed that the pronounced peaks of the spectra of axial and vertical fluctuation velocities appear in the range of low frequency near the bottom of pipe. These peaks of spectra become larger and their frequencies decrease by using fins. In the range of low frequencies (3–25 Hz), the wavelet components of the fluctuating energy of axial particle velocity make the main contribution accounting for 87% and 93% respectively for non-fin and using fins near the bottom of pipe. In the range of relatively high frequency (50–400 Hz), however, the wavelet components of using fins, accounting for about 49%, become smaller than that of non-fin, accounting for about 72%, in the suspension flow regime near the top of pipe. The skewness factor of axial particle fluctuation velocity indicates that the wavelet components follow the Gaussian probability distribution as the central frequency decreases.  相似文献   

19.
The onevelocity motion of a gas–liquid medium with a variable mass fraction of the gas phase, which is equilibrium in terms of phase pressures, is considered. The existence conditions of nonlinear periodic wave packets similar in structure to roll waves in open inclined channels are found. The structure of travelling waves in the medium with continuous addition of energy to the gas phase is studied.  相似文献   

20.
This work discusses the development of a three-dimensional Eulerian–Lagrangian CFD model for a gas–liquid flow in a rectangular column. The model resolves the time-dependent, three-dimensional motion of small gas bubbles in a liquid to simulate the dynamic characteristics of the oscillating bubble plume. Our model incorporates drag, gravity, buoyancy, lift, pressure gradient and virtual mass forces acting on a bubble rising in a liquid, and accounts for two-way momentum coupling between the phases. We use MUSIG model that provides a framework in which the population balance method together with the break up and coalescence models can be incorporated into three-dimensional CFD calculations. We use turbulent flow to describe liquid flow field. The standard κ–ε of turbulence is selected for calculating the properties of turbulent flow. The effect of aspect ratio of the column on the flow pattern, liquid velocity and gas hold-up profiles is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号