首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Interfacial water structure plays a key role in many chemical, biological, and environmental processes. Here, in addition to conventional VSFG, we employ phase-sensitive sum frequency generation (PS-SFG) to investigate the average direction of the transition dipole of interfacial water molecules that is intrinsically contained in the sign of the second-order nonlinear susceptibility, χ((2)). The orientation of water at air/aqueous inorganic salt interfaces of Na(2)CO(3) and NaHCO(3) was inferred from the direct measurement of the transition dipole moment of the interfacial water molecules. It is found that bicarbonate and its counterion sodium do not significantly perturb the interfacial water structure, whereas carbonate strongly orients water so that the water hydrogens point down toward the bulk solution. This is consistent with the picture of carbonate anions residing many layers below the water surface with a preference for the sodium cations to be above the anions and thereby closer to the topmost layer of the water surface.  相似文献   

3.
The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.  相似文献   

4.
Raman and infrared spectra have been recorded of water and heavy-water solutions of carbon dioxide, potassium bicarbonate, and potassium carbonate. The structures of the carbonate and bicarbonate ions and CO2 (aqueous solution) have been determined from a consideration of Raman and infrared data. The results reveal the presence of solvent effects in the carbonate and CO2 water solutions. No bands characteristic of H2CO3 were observed in the Raman spectrum of aqueous solutions of CO2.  相似文献   

5.
Interfacial water structure is a most important parameter that influences the collector adsorption by salt minerals such as borax, potash and trona. According to previous studies, salts can be classified as water structure makers and water structure breakers. Water structure making and breaking properties of salt minerals in their saturated brine solutions are essential to explain their flotation behavior. In this work, water structure making-breaking studies in solutions of carbonate and bicarbonate salts (Na(2)CO(3), K(2)CO(3), NaHCO(3) and NH(4)HCO(3)) in 4 wt% D(2)O in H(2)O mixtures have been performed by FTIR analysis of the OD stretching band. This method reveals a microscopic picture of the water structure making/breaking character of the salts in terms of the hydrogen bonding between the water molecules in solution. The results from the vibrational spectroscopic studies demonstrate that carbonate salts (Na(2)CO(3) and K(2)CO(3)) act as strong structure makers, whereas bicarbonate salts (NaHCO(3) and NH(4)HCO(3)) act as weak structure makers. In addition, the changes in the OD band parameters of carbonate and bicarbonate salt solutions are in agreement with the viscosity characteristics of their solutions.  相似文献   

6.
Specific ion effects on the nonlinear optical response from the water molecules at the air/sodium halide solution interfaces are measured using non-resonant surface second harmonic generation (SHG). Procedures have been developed to monitor and remove the impurities in the salt solution samples to ensure measurement of small changes in the SHG signal. Quantitative polarization analysis of the measured SHG data indicated that the average orientation of the interfacial water molecules changed only slightly around 40 degrees with the increase of the bulk concentration of the three sodium halides, namely NaF, NaCl and NaBr, from that of the neat air/water interface. The observed significant SHG signal increase with the bulk salt concentration is attributed to the overall increase of the thickness of the interfacial water molecular layer, following the order of NaBr > NaCl approximately NaF. The absence of the electric-field-induced SHG (EFISHG) effect indicated that the electric double layer at the salt aqueous solution interface is much weaker than that predicted from the molecular dynamics (MD) simulations. These results provided quantitative data to the specific anion effects on the interfacial water molecules of the electrolyte aqueous solution, not only for the larger and more polarizable Br(-) anion, but also for the smaller and less polarizable F(-) and Cl(-) anions.  相似文献   

7.
Investigations of the air-liquid interface of aqueous salt solutions containing ammonium (NH(4)(+)) and sulfate (SO(4)(2-)) ions were carried out using molecular dynamics simulations and vibrational sum frequency generation spectroscopy. The molecular dynamics simulations show that the predominant effect of SO(4)(2-) ions, which are strongly repelled from the surface, is to increase the thickness of the interfacial region. The vibrational spectra reported are in the O-H stretching region of liquid water. Isotropic Raman and ATR-FTIR (attenuated total reflection Fourier transform infrared) spectroscopies were used to study the effect of ammonium and sulfate ions on the bulk structure of water, whereas surface sum frequency generation spectroscopy was used to study the effect of these ions on the interfacial structure of water. Analysis of the interfacial and bulk vibrational spectra reveal that aqueous solutions containing SO(4)(2-) perturb the interfacial water structure differently than the bulk and, consistent with the molecular dynamics simulations, reveal an increase in the thickness of the interfacial region.  相似文献   

8.
Phase-sensitive sum-frequency vibrational spectroscopy was used to study water/vapor interfaces of HCl, HI, and NaOH solutions. The measured imaginary part of the surface spectral responses provided direct characterization of OH stretch vibrations and information about net polar orientations of water species contributing to different regions of the spectrum. We found clear evidence that hydronium ions prefer to emerge at interfaces. Their OH stretches contribute to the "ice-like" band in the spectrum. Their charges create a positive surface field that tends to reorient water molecules more loosely bonded to the topmost water layer with oxygen toward the interface, and thus enhances significantly the "liquid-like" band in the spectrum. Iodine ions in solution also like to appear at the interface and alter the positive surface field by forming a narrow double-charge layer with hydronium ions. In NaOH solution, the observed weak change of the "liquid-like" band and disappearance of the "ice-like" band in the spectrum indicates that OH(-) ions must also have excess at the interface. How they are incorporated in the interfacial water structure is, however, not clear.  相似文献   

9.
The surface tension of the air—water interface increases upon addition of inorganic salts, implying a negative surface excess of ionic species. Most acids, however, induce a decrease in surface tension, indicating a positive surface excess of hydrated protons. In combination with the apparent negative charge at pure air–water interfaces derived from electrokinetic experiments, this experimental observation has been a source of intense debate since the mid‐19th century. Herein, we calculate surface tensions and ionic surface propensities at air–water interfaces from classical, thermodynamically consistent molecular dynamics simulations. The surface tensions of NaOH, HCl, and NaCl solutions show outstanding quantitative agreement with experiment. Of the studied ions, only H3O+ adsorbs to the air–water interface. The adsorption is explained by the deep potential well caused by the orientation of the H3O+ dipole in the interfacial electric field, which is confirmed by ab initio simulations.  相似文献   

10.
A novel, growing drop technique is described for measuring dynamic interfacial tension due to sorption of surface-active solutes. The proposed method relates the instantaneous pressure and size of expanding liquid drops to the interfacial tension and is useful for measuring both liquid/gas and liquid/liquid tensions over a wide range of time scales, currently from 10 ms to several hours. Growing drop measurements on surfactant-free water/ air and water/octanol interfaces yield constant tensions equal to their known literature values. For surfactant-laden, liquid drops, the growing drop technique captures the actual transient tension evolution of a single interface, rather than interval times as with the classic maximum-drop-pressure and drop-volume tension measurements. Dynamic tensions measured for 0.25 mM aqueous 1-decanol solution/air and 0.02 kg/m3 aqueous Triton X-100 solution/dodecane interfaces show nonmonotonic behavior, indicating slow surfactant transport relative to the imposed rates of interfacial dilatation. The dynamic tension of a purified and fresh 6 mM aqueous sodium dodecyl sulfate (SDS) solution/air interface shows only a monotonic decrease, indicating rapid surfactant transport relative to the imposed rates of dilatation. Conversely, an aged SDS solution, naturally containing trace dodecanol impurities, exhibits dynamic tensions which reflect a superposition of the rapidly equilibrating SDS and the slowly adsorbing dodecanol.  相似文献   

11.
Measuring the molecular properties of the surface of acidic and basic aqueous solutions is essential to understanding a wide range of important biological, chemical, and environmental processes on our planet. In the present studies, vibrational sum-frequency spectroscopy (VSFS) is employed in combination with isotopic dilution experiments at the vapor/water interface to elucidate the interfacial water structure as the pH is varied with HCl and NaOH. In acidic solutions, solvated proton species are seen throughout the interfacial region, and they alter the hydrogen bonding between water molecules in ways that reflect their depth in the interfacial region. At the higher frequencies of the OH stretch region, there is spectral evidence for solvated proton species residing in the topmost layers of the interfacial region. As reported in previous VSF studies, more strongly bound solvated proton species are observed at lower OH stretching frequencies. The solvated proton species that have stronger hydrogen bonding are similar in structure to those found in bulk acid solutions and likely reside somewhat deeper in the interfacial region. There is also evidence of OH stretching from solvated protons and relatively strong hydrogen bonding in the solvation sphere that is similar to other solvated ions. In contrast, water molecules solvating OH(-) ions show relatively weak hydrogen bonding and significantly less interfacial order. VSF spectra are acquired under multiple polarizations to provide crucial information for the interpretation of the spectra and for the determination of interfacial structure.  相似文献   

12.
Two metastable calcium carbonate polymorphs, hemispherical vaterite and needle-like aragonite, are selectively formed at the air/water interface by the mediation of poly(ethyleneimine)(with molecular weights of 25000 and 2000, respectively) dissolved in supersaturated calcium bicarbonate solution.  相似文献   

13.
Dynamic and equilibrium interfacial tensions between crude oil fractions and aqueous solutions of various compositions and pH were measured. The basic oil components seemed to determine the interfacial tensions at pH 2, while the non-dissociated and dissociated acidic components governed the interfacial tension at the natural pH and pH 9, respectively. The ionic composition of the aqueous phase influenced the degree of dissociation of the acidic components at pH 9: Na+ ions in the aqueous phase promoted dissociation of the interfacial acidic components (compared to pure water), while Ca2+ ions resulted in complexation with the dissociated acids and most likely formation of stable interfacial films. The amount of Ca2+ determined which of these phenomena that dominated when both ions were present in sea water solutions. Generally, the interfacial tensions of the oil fractions were lower when measured against the high salinity aqueous solutions than against the corresponding low salinity solutions.   相似文献   

14.
Adsorption kinetics of some carotenoids at the oil/water interface   总被引:2,自引:0,他引:2  
The kinetic analysis of the adsorption of two carotenoids (i.e., ethyl ester of β-apo-8′-carotenoic acid and β-carotene, all trans-isomers) from n-hexane solutions at the oil/water interface is presented for several carotenoid concentrations in the oil phase. A new kinetic approach is developed and it addresses the diffusion adsorption associated with a reversible interfacial reaction, which describes the reorientation of surfactant molecules between two conformations. This approach leads to a general analytical expression that contains four physical parameters and describes with high accuracy the experimental dynamic interfacial tensions for the two carotenoids, which independently adsorb from n-hexane phase to the n-hexane/water interface. The calculations give the characteristic times for the carotenoid adsorption at the oil/water interface in terms of diffusion relaxation and kinetic relaxation times. The results explain the long time effects on the adsorption of these carotenoids at the oil/water interface. The data are in substantial agreement with the molecular structure of these carotenoids and with the earlier data recorded for cholesterol adsorption at the n-heptane/water interface. Based on these findings, we propose a molecular mechanism for the interfacial transformation of carotenoid molecules at a hydrophobic/hydrophilic interface.  相似文献   

15.
判断一种表面活性剂降低油-水界面张力性能的优劣,就需要对界面张力进行准确有效的测量。文章就不同浓度的十二烷基三甲基溴化铵(DTAB)水溶液分别与正庚烷(n-Heptane)和正十六烷(n-Hexadecane)之间的界面张力进行定量的测量,分别得到了在30℃下水-正庚烷和水-正十六烷体系的界面张力随DTAB浓度变化的曲线。结果表明,在DTAB浓度达到其所在体系中的CMC值时,水-正庚烷体系界面张力小于水-十六烷体系界面张力。DTAB具有较强的抗矿盐能力,界面张力随温度升高有所下降。  相似文献   

16.
The effects of sodium (Na+) and calcium (Ca2+) cations on model zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayers spread on metal chloride salt solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne‐detected (HD)‐VSFG spectroscopy. VSFG and HD‐VSFG spectra in the OH stretching region reveal cation‐specific effects on the interfacial water′s H‐bonding network, knowledge of which has been limited to date. It is found that low‐concentrated Ca2+ more strongly perturbs interfacial water organization relative to highly concentrated Na+. At higher Ca2+ concentrations, the water H‐bonding network at the DPPC/CaCl2 interface reorganizes and the resulting spectrum closely follows that of the bare air/CaCl2 interface up to ~3400 cm?1. Most interesting is the appearance of a negative band at ~3450 cm?1 in the DPPC/CaCl2 Im χs(2) spectra, likely arising from an asymmetric solvation of Ca2+–phosphate headgroup complexes. This gives rise to an electric field that orients the net OH transition moments of a subset of OH dipoles toward the bulk solution.  相似文献   

17.
Interaction of sodium dodecyl sulfate (SDS) with the cationic polyelectrolyte poly(ethyleneimine) (PEI) was investigated in this study. Turbidity measurements were performed in order to analyze the interaction and complex formation in bulk solution as a function of polymer concentration and pH. Surface tension measurements were made to investigate the properties of SDS/PEI/water mixtures at air/solution interface. Results revealed that SDS/PEI complexes form in solution depending on the surfactant and polymer concentration. A decrease was observed in surface tension values in the presence of SDS/PEI mixtures compared to the values of pure SDS solutions. Both solution and interfacial properties exhibited pH dependent behavior. A shift was seen in the critical micelle concentration of SDS solutions as a function of PEI concentration and solution pH. Monovalent and divalent salt additions showed some influence on the interfacial properties of SDS solutions in the presence of PEI.  相似文献   

18.
Specific ion effects on interfacial water structure near macromolecules   总被引:2,自引:0,他引:2  
We investigated specific ion effects on interfacial water structure next to macromolecules with vibrational sum frequency spectroscopy (VSFS). Poly-(N-isopropylacrylamide) was adsorbed at the air/water interface for this purpose. It was found that the presence of salt in the subphase could induce the reorganization of water adjacent to the macromolecule and that the changes depended greatly on the specific identity and concentration of the salt employed. Ranked by their propensity to orient interfacial water molecules, sodium salts could be placed in the following order: NaSCN > NaClO4 > NaI > NaNO3 approximately NaBr > NaCl > pure water approximately NaF approximately Na2SO4. This ordering is a Hofmeister series. On the other hand, varying the identity of the cation exhibited virtually no effect. We also showed that the oscillator strength in the OH stretch region was linearly related to changes in the surface potential caused by anion adsorption. This fact allowed binding isotherms to be abstracted from the VSFS data. Such results offer direct evidence that interfacial water structure can be predominantly the consequence of macromolecule-ion interactions.  相似文献   

19.
油/水界面张力的影响因素及无机盐对油水铺展的影响   总被引:1,自引:0,他引:1  
讨论不同有机相与水形成的油/水界面处水/气、油/气及油/水3个界面张力的影响因素及相对大小。重点讨论了加入无机盐对作用于透镜状油滴上的3个界面张力的影响,总结出基本的规律并进行了实验验证。  相似文献   

20.
Classical molecular dynamics simulations have been performed to investigate the interface between liquid water and methane gas under methane hydrate forming conditions. The local environments of the water molecules were studied using order parameters which distinguish between liquid water, ice and methane hydrate phases. Bulk water and water/air interfaces were also studied to allow comparisons to be made between water molecules in the different environments and to determine the effects of the different methane densities studied. Good agreement between experimental and calculated surface tensions is obtained if long range corrections are included. The water surface is found to have a structure which is very similar to that of bulk water, but more tetrahedral, and more clathrate-like than ice-like. In these simulations the concentration of methane in water at the interface is shown to be appropriate for clathrates at higher gas densities (pressures). The orientation of water molecules around methane molecules in the interfacial region appears to depend only weakly on pressure and one of the difficulties in forming hydrate is the availability of water molecules tangential to the hydrate cage. At the interface, the water structure is more disordered than in the bulk water region with increased occurrence compared with the bulk of those angles and orientations found in the clathrate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号