首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The azobenzene‐based amphiphilic copolymers have drawn significant attention as a kind of multi‐responsive smart materials. The demand on deeper investigation of how the azobenzene group influences the micelles formation and light‐responsive behavior on molecular level is very urgent. In this article, multi‐responsive block copolymers, poly (acrylic acid)‐block‐poly[4'‐[[(2‐Methacryloyloxy)ethyl]ethylainino]azobenzene‐co‐poly (ethylene glycol) methyl ether methacrylate] (PAA‐b‐P (AzoMA‐co‐PEGMA)), with pH‐, light‐ and reduction‐responsiveness were synthesized by the monomers of AzoMA, PEGMA and acrylic acid via reversible addition‐fragmentation chain transfer polymerization (RAFT). The amphiphilic block copolymer presented aggregation‐induced emission effect, and it was pH, light, and reduction responsive. The results showed that the micelle size decreased with the decreasing of pH within a certain range. However, the particle size of micelles increased significantly when the pH was 4. Once adding reduction agent, the micelles were disassembly. Fluorescent molecule of Nile red was selected as a hydrophobic guest molecule to study the properties of encapsulating and releasing abilities of block copolymer micelles for guest molecules. The results showed that the loading capacity of three kinds of copolymer micelles was closely related to the aggregates formed by the hydrophobic block, mainly azobenzene block. Besides, the block copolymer micelles could release a certain amount of Nile red under the irradiation of UV light, the reduction with Na2S2O4 as reductant, and the exposure to alkaline environment. The mechanism of how the different status of azobenzene group influenced the self‐assembly and multi‐responsive behavior was explored on molecular level.  相似文献   

2.
采用共溶剂法制备了聚氧乙烯-b-聚(芘甲基丙烯酸甲酯)两亲性嵌段共聚物胶束(ACM)和由ACM包覆疏水染料尼罗红的复合胶束(ACM-N).采用IR,扫描电镜(SEM),动态光散射仪(DLS)监测ACM-N中尼罗红在高强聚焦超声辐射下的释放响应行为.监测结果表明,超声辐射使共聚物的大部分酯键断裂,由两亲性变为单亲水性,胶束结构被破坏.  相似文献   

3.
Thermosensitive polymer micelles are generally obtained with block copolymers in which one block exhibits a lower critical solution temperature in aqueous solution. We investigate a different design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon heating shifts the hydrophilic-hydrophobic balance toward the destabilization of block copolymer micelles. Atom transfer radical polymerization was utilized to synthesize a series of diblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(2-tetrahydropyranyl methacrylate) (PTHPMA). We show that micelles of PEO-b-PTHPMA in aqueous solution can be destabilized as a result of the thermosensitive hydrolytic cleavage of tetrahydropyranyl (THP) groups that transforms PTHPMA into hydrophilic poly(methacrylic acid). The three related processes occurring in aqueous solution, namely, hydrolytic cleavage of THP, destabilization of micelles, and release of loaded Nile Red (NR), were investigated simultaneously using 1H NMR, dynamic light scattering, and fluorescence spectroscopy, respectively. At 80 degrees C, the results suggest that the three events proceed with a similar kinetics. Although slower than at elevated temperatures, the disruption of PEO-b-PTHPMA micelles can take place at the body temperature (approximately 37 degrees C), and the release kinetics of NR can be adjusted by changing the relative lengths of the two blocks or the pH of the solution.  相似文献   

4.
We report a new design of photolabile acetal‐containing amphiphilic block copolymers. Acetals as protecting groups for carbonyls or diols can be hydrolyzed under acidic condition but very stable with respect to hydrolysis at pH > 7. When combining light‐capturing chromophores with acetals, the hydrolysis of acetals can be activated by light to design dual responsive acetal‐containing polymers. Using acetalization reaction of 2,3‐dihydroxypropyl methacrylate with benzaldehyde derivatives, two new acetal‐containing photolyzable monomers have been designed. Comparable to commonly used photolabile monomers containing nitrobenzyl esters, the two acetal‐containing monomers are easy to polymerize using atom transfer radical polymerization with excellent molecular weight and dispersity control. We studied the cleavage kinetics and mechanism of acetal groups in both monomers and polyethylene oxide (PEO)‐containing amphiphilic block copolymers using 1H NMR and UV–vis spectroscopy. o‐Nitrobenzaldehyde acetal showed a Norrish Type II rearrangement to form benzoic ester; while, 2,5‐dimethoxy benzaldehyde acetal was photolabile to completely release 2,3‐dihydroxypropyl methacrylate. The photocleavage of acetals is a zero‐order reaction in regardless of molecular states of acetals; while, the acid‐cleavage of acetals proves to be a first‐order kinetics and the cleavage becomes much slower for polymers. The self‐assembly of acetal‐containing amphiphilic block copolymers and the acid‐/light‐controlled dissociation of their vesicles have been investigated. We demonstrate that those acetal‐containing polymers are potentially useful as smart drug delivery systems where the release kinetics of payloads is tunable using light and pH as triggers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1815–1824  相似文献   

5.
Amphiphilic AB block copolymers consisting of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide lactate) and poly(ethylene glycol), pHPMAmDL-b-PEG, were synthesized via a macroinitiator route. Dynamic light scattering measurements showed that these block copolymers form polymeric micelles in water with a size of around 50 nm by heating of an aqueous polymer solution from below to above the critical micelle temperature (cmt). The critical micelle concentration as well as the cmt decreased with increasing pHPMAmDL block lengths, which can be attributed to the greater hydrophobicity of the thermosensitive block with increasing molecular weight. Cryogenic transmission electron microscopy analysis revealed that the micelles have a spherical shape with a narrow size distribution. 1H NMR measurements in D2O showed that the intensity of the peaks of the protons from the pHPMAmDL block significantly decreased above the cmt, indicating that the thermosensitive blocks indeed form the solidlike core of the micelles. Static light scattering measurements demonstrated that pHPMAmDL-b-PEG micelles with relatively large pHPMAmDL blocks possess a highly packed core that is stabilized by a dense layer of swollen PEG chains. FT-IR analysis indicated that dehydration of amide bonds in the pHPMAmDL block occurs when the polymer dissolved in water is heated from below to above its cmt. The micelles were stable when an aqueous solution of micelles was incubated at 37 degrees C and at pH 5.0, where the hydrolysis rate of lactate side groups is minimized. On the other hand, at pH 9.0, where hydrolysis of the lactic acid side groups occurs, the micelles started to swell after 1.5 h of incubation and complete dissolution of micelles was observed after 4 h as a result of hydrophilization of the thermosensitive block. Fluorescence spectroscopy measurements with pyrene loaded in the hydrophobic core of the micelles showed that when these micelles were incubated at pH 8.6 and at 37 degrees C the microenvironment of pyrene became increasingly hydrated in time during this swelling phase. The results demonstrate the potential applicability of pHPMAmDL-b-PEG block copolymer micelles for the controlled delivery of hydrophobic drugs.  相似文献   

6.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

7.
A unique pH-dependent phase behavior from a copolymer micellar solution to a collapsed hydrogel with micelles ordered in a hexagonal phase was observed. Small-angle neutron scattering (SANS) was used to follow the pH-dependent structural evolution of micelles formed in a solution of a pentablock copolymer consisting of poly((diethylaminoethyl methacrylate)-b-(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)-b-(diethylaminoethyl methacrylate)) (PDEAEM25-b-PEO100-b-PPO65-b-PEO100-b-PDEAEM25). Between pH 3.0 and pH 7.4, we observed the presence of charged spherical micelles. Increasing the pH of the micelle solution above pH 7.4 resulted in increasing the size of the micelles due to the increasing hydrophobicity of the PDEAEM blocks above their pKa of 7.6. The increase in size of the spherical micelles resulted in a transition to a cylindrical micelle morphology in the pH range 8.1-10.5, and at pH >11, the copolymer solution undergoes macroscopic phase separation. Indeed, the phase separated copolymer sediments and coalesces into a hydrogel structure that consists of 25-35 wt % water. Small-angle X-ray scattering (SAXS) clearly indicated that the hydrogel has a hexagonal ordered phase. Interestingly, the process is reversible, as lowering of the pH below 7.0 leads to rapid dissolution of the solid into homogeneous solution. We believe that the hexagonal structure in the hydrogel is a result of the organization of the cylindrical micelles due to the increased hydrophobic interactions between the micelles at 70 degrees C and pH 11. Thus we have developed a pH-/temperature-dependent, reversible hierarchically self-assembling block copolymer system with structures spanning nano- to microscale dimensions.  相似文献   

8.
Poly[(L-histidine)-co-(L-phenylalanine)]-block-poly(ethylene glycol) (HF-b-PEG) diblock copolymers were synthesized to be used for preparation of pH-sensitive polymeric micelles. First, HF block was synthesized by ring opening copolymerization of L-histidine and L-phenylalanine N-carboxyanhydride, and then the resulting copolymer was coupled with PEG. The pKa value of diblock copolymer can be controlled by adjusting the histidine/phenylalanine ratio in HF block. It is observed that the block copolymers form micelles in aqueous media and that the micelles are spherical in shape with a unimodal distribution. The micelle is formed at pH higher than pKa of block copolymer while it is not formed at lower pH. This is because the protonation of histidine residue in the HF block converts the hydrophobic core into hydrophilic one at lower pH. Acid-Base titration profile of HF41(5600)-b-PEG, HF56(5500)-b-PEG, H(5100)-b-PEG and 0.1 N NaCl.  相似文献   

9.
以二重氢键为引导,二硫键连接疏水性聚乳酸(PLA)和亲水性β-环糊精(β-CD)合成了嵌段共聚物β-CD-PLA。采用1 H-NMR和GPC对嵌段共聚物β-CD-PLA的结构进行了表征,以芘作为荧光分子探针对嵌段共聚物β-CD-PLA自组装胶束的性质进行了表征,采用动态光散射纳米粒度仪(DLS)对自组装胶束的粒径进行了测试。结果表明:在二重氢键的引导作用力和碘的氧化作用下,中间体脱去保护基形成双二硫键,形成目标嵌段共聚物β-CD-PLA,该嵌段共聚物能够在水中自组装形成纳米胶束,临界胶束浓度(CMC)为0.089mg/mL,在稀溶液中具有良好的稳定性,自组装形成空白胶束的粒径为31nm,阿霉素盐酸盐(DOX)载药胶束的粒径为42nm。  相似文献   

10.
We fabricated novel pH-sensitive polymeric micelles consisting of amphiphilic block copolymer containing pyridyl groups as side chains in the hydrophobic block. The number average particle diameter of the polymeric micelles at pH 7 was approximately 200 nm. A decrease in pH resulted in deformation of the polymeric micelles over a very narrow pH range (between pH 5.7 and 5.6). Interestingly, micellization and demicellization occurred reversibly in this narrow pH range. Polymeric micelles incorporating 5-fluorouracil (5FU) were also prepared. Decreasing the pH of this polymeric micelle solution from 7 to 5.5 resulted in the rapid release of 5FU at pH 5.6; the drug was completely released within 30 min. These results suggest that deformation of the polymeric micelles caused the rapid release of 5FU.  相似文献   

11.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

12.
We intend to form photosensitive block copolymer micelles for controllable release of encapsulated substances. Here, we designed and synthesized a new photocleavable cross-linker (2-nitrophenyl ethylene glycol dimethacrylate) for methyl methacrylate (MMA) atom transfer radical polymerization. Four different ratios (0:1, 1:26, 1:16, 1:8.8) of the photocleavable cross-linker to MMA monomer were used and four block copolymers (P0, P1, P2, P3) were synthesized with PEO-Br as the macroinitiator. Gel permeation chromatography and (1) H NMR studies showed that linear polymer molecules could be cross-linked by the photocleavable linker. The fluorescence studies of the encapsulated Nile Red (NR) showed that there were lower critical micelle concentrations for the polymer P1, P2 and P3 than polymer P0. And dynamic light scattering and SEM confirmed the formation of polymer micelles. Photolysis experiments demonstrated that NR encapsulated in the polymer micelles could be released upon UV irradiation (365 nm, 11 mW cm(-2)) due to the breakage of the photocleavable linker and the generation of more hydrophilic acid moieties, which destabilized polymer micelles. Our study shows a new strategy for the possibility of photocontrollable drug release for hydrophobic drugs.  相似文献   

13.
Comicellization of a star block copolymer poly(ε-caprolactone)-block-poly(diethylamino)ethyl methacrylate (S(PCL-b-PDEAEMA)) and a linear block copolymer methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL) was developed to enhance the stability and lower the cytotoxicity of the micelles. The two copolymers self-assembled into the mixed micelles with a common PCL core surrounded by a mixed PDEAEMA/mPEG shell in aqueous solution. This core-shell structure was transformed to the core-shell-corona structure at high pH due to the collapse of the PDEAEMA segment. The properties of the polymeric micelles were greatly dependent on the weight ratio of the two copolymers and the external pH. As increasing the mPEG-b-PCL content, the size and the zeta potential of the mixed micelles were lowered while the pH-dependent stability and the biocompatibility were improved. Moreover, an increase in pH accelerated the release of indomethacin (IND) from the mixed micelles in vitro. These results augured that the mixed micelles could be applied as a stable pH-sensitive release system.  相似文献   

14.
pH敏感型mPEG-Hz-PLA聚合物纳米载药胶束的制备   总被引:1,自引:0,他引:1  
以合成的含有腙键的聚乙二醇大分子(mPEG-Hz-OH)为引发剂,以丙交酯为单体引发开环聚合反应,并通过调整投料比,制备出3种不同分子量的含腙键的生物可降解嵌段聚合物(mPEG-Hz-PLA).将腙键引入到聚合物的骨架中,以此构建聚合物胶束并作为pH敏感型纳米药物载体.制备的pH敏感型胶束的CMC值等于或低于5.46×10-4 mg/m L,DLS和TEM显示粒径均小于100 nm,且粒径分布均匀.非pH敏感型胶束在不同pH下的粒径变化不明显,而pH敏感型胶束在酸性环境下(pH=4.0和pH=5.0)胶束粒径出现了明显变化.以阿霉素为模型药物制备了pH敏感型载药胶束,其粒径比空白胶束大(100~200 nm),且粒径分布均匀.药物释放实验表明pH敏感型载药胶束随着释放介质pH降低累积释药量增高.MTT实验表明空白胶束对HeLa细胞和RAW264.7细胞几乎没有抑制作用,而载阿霉素的胶束对2种细胞的抑制作用都随着剂量的增大和时间的延长而增强.  相似文献   

15.
通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和酸性水解制备了一种具有pH-响应性的三嵌段共聚物聚乙二醇-聚谷氨酸-聚丙氨酸(mPEG-PLGA-PLAA).通过核磁共振、ζ-电势、动态光散射、电子显微镜等手段表征了此类三嵌段共聚物的自组装过程及所形成胶束的pH-响应性.使用圆二色谱和红外光谱,分析了胶束结构随环境pH值转变过程中聚氨基酸链段二级结构的变化.以阿霉素作为模型药物,研究了三嵌段共聚物的载药能力和在不同pH条件下的药物释放能力.在碱性条件下,PLGA链段去质子化,链段从疏水性变为亲水性,胶束中间层由于水合作用变得松散,药物释放速率增加;在酸性条件下,PLGA链段质子化,不带电荷,与阿霉素药物分子间的静电相互作用消失.同时,PLGA链段α-螺旋含量增加,形成由链内氢键维持的刚性棒状结构,将链段周围包埋的药物分子"挤出",加速了药物的释放.  相似文献   

16.
Fluorine-containing amphiphilic block copolymers, poly(sodium methacrylate)-block-poly(nonafluorohexyl methacrylate) (NaMAm-b-NFHMAn) (m:n = 61:12, 72:33, 64:57), and the corresponding non-fluorine-containing amphiphilic block copolymer, poly(sodium methacrylate)-block-poly(hexyl methacrylate) (NaMAm-b-HMAn) (m:n = 64:10, 69:37, 67:50), were synthesized. Both polyNaMA-b-polyNFHMA and polyNaMA-b-polyHMA formed micelles above critical micelle concentrations, (cmc's), around 3 x 10(-5) to 1 x 10(-4) mol/L, while neither polymer decreased surface tension of aqueous solutions. The size and shape of the micelles were examined by dynamic light scattering, small-angle neutron scattering, and small-angle X-ray scattering. PolyNaMA-b-polyHMA appeared to form only spherical micelles, while polyNaMA-b-polyNFHMA with a long NFHMA segment formed both spherical and rodlike micelles. The micelles of fluorine-containing block copolymers were obviously larger than those of non-fluorine-containing block copolymers with the same chain length and the same hydrophilic/hydrophobic chain ratio. The fluorine-containing block copolymer selectively solubilized fluorinated dye into the water phase when a mixture of decafluorobiphenyl and 2,6-dimethylnaphthalene was added to the micelle solution.  相似文献   

17.
Novel pH sensitive biodegradable block copolymers (MPEG-PDLLA-OSM) composed of mono-methoxy poly(ethylene glycol) (MPEG), poly (D,L-lactide) (PDLLA) and sulfamethazine oligomer (OSM) were synthesized via ring-opening polymerization and a dicyclohexyl carboimide (DCC) coupling reaction. These copolymers had a relatively low critical micelle concentration (CMC) due to the strong hydrophobic properties of non-ionized OSM at pH 7.0. Also, the pH sensitive block copolymers showed the micelle-unimer transition due to the ionization-non-ionization of OSM in the pH range (pH 7.2-8.4) above the CMC. Due to the pH sensitive properties of the block copolymer, the hydrophobic drug paclitaxel (PTX) was incorporated into a pH sensitive block copolymer micelle by the pH induced micellization method, without using an organic solvent. The block copolymer micelle prepared by pH induced micellization showed a relatively high PTX loading efficiency, and good stability for 2 d at 37 degrees C. Furthermore, the PTX loaded micelle showed a sustained release of PTX with a small burst in vitro over 2 d. The present results suggest that the pH induced micellization method due to the micelle-unimer transition of the pH sensitive block copolymer would be a novel and valuable drug incorporation tool for hydrophobic and protein drugs, since no organic solvent is involved in the formulation.  相似文献   

18.
采用开环聚合法和自由基聚合法合成了生物可降解嵌段共聚物OSM1-PCLA-PEG-PCLA-OSM1, 并对其进行了结构表征. 采用荧光分光光度计和激光粒度仪对共聚物溶液临界胶束浓度(CMC)和粒径大小及分布进行了考察, 研究了温度和pH对共聚物胶束形成的影响. 相转变过程研究结果表明, 共聚物溶液具有pH和温度双重敏感性. 共聚物溶液在一定温度和pH条件下可发生溶液-凝胶相转变.  相似文献   

19.
An amphiphilic star block copolymer comprised of a hydrophobic PMMA block and a hydrophilic tri-arm poly(NIPAAm-co-DMAEMA) block was synthesized by copolymerization of NIPAAm and DMAEMA, with Ce(4+) ions and tris(hydroxymethyl)methylamine as a redox initiatory system. The star copolymer undergoes self-assembly to the micellar nanoparticles with a core-shell structure and the thermo/pH dual-response, originated from the thermo-sensitivity of PNIPAAm and the pH-sensitivity of PDMAEMA. A fluorescence probe study showed the pH-dependent low CMCs (7.5 to 11.2 mg/L) of the micelles, confirming the formation of stable micelles. Morphological investigations showed that the blank and drug-loaded micelles both had spherical and uniform shapes. The sizes of the blank and drug-loaded nanoparticles were between 80 and 120 nm, depending on the given pH. The LCSTs of the star copolymer were determined to be 32 degrees C, 36.6 degrees C and 39.5 degrees C, corresponding to pH 5, pH 7.4 and pH 9, respectively, demonstrating a pH-dependent thermo-response. As a drug delivery, the micellar nanoparticles showed the dual-responsive release profiles in vitro, which were confirmed by the drug release studies. The obtained results showed the thermo-triggered accelerated release at pH 7.4, and the pH-triggered accelerated release at 37 degrees C, indicating the micelles nanoparticles would be a promising site-specific drug delivery for enhancing the accumulation of drug in targeting pathological areas.  相似文献   

20.
We present a scattering study of a selectively deuterated micelle-forming diblock copolymer. The copolymer comprises a partially deuterated polystyrene (d,h-PS) block and an imidazolium-functionalized PS (IL) block. In toluene solutions, the copolymers assemble into elongated micelles where the IL block forms the micelle core. Through dynamic light scattering (DLS) measurements, we obtain the overall size of the micelles. In our small-angle neutron scattering (SANS) studies, we use contrast matching to characterize the IL core and the PS shell of the micelles independently. The PS block forming the micelle shell exhibits either a starlike or brushlike conformation depending upon the size of the core to which it is tethered. We find the IL block to be in an extended conformation, driving the formation of slightly elongated and relatively stiff micelle cores. The elongated micelle core cross-sectional radius and length depend linearly on the length of the IL block. We find that the micelles can sequester a few water molecules for each IL repeat unit; the addition of water slightly increases the cross section of the elongated micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号