首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The molecular configuration and crystal structure of solid polycrystalline N,N′′‐diacetylbiuret (DAB), a potential nitrogen‐rich fertilizer, have been analyzed by a combination of solid‐ and liquid‐state NMR spectroscopy, X‐ray diffraction, and DFT calculations. Initially a pure NMR study (“NMR crystallography”) was performed as available single crystals of DAB were not suitable for X‐ray diffraction. Solid‐state 13C NMR spectra revealed the unexpected existence of two polymorphic modifications (α‐ and β‐DAB) obtained from different chemical procedures. Several NMR techniques were applied for a thorough characterization of the molecular system, revealing chemical shift anisotropy (CSA) tensors of selected nuclei in the solid state, chemical shifts in the liquid state, and molecular dynamics in the solid state. Dynamic NMR spectroscopy of DAB in solution revealed exchange between two different configurations, which raised the question, is there a correlation between the two different configurations found in solution and the two polymorphic modifications found in the solid state? By using this knowledge, a new crystallization protocol was devised which led to the growth of single crystals suitable for X‐ray diffraction. The X‐ray data showed that the same symmetric configuration is present in both polymorphic modifications, but the packing patterns in the crystals are different. In both cases hydrogen bonds lead to the formation of planes of DAB molecules. Additional symmetry elements, a two‐fold screw in the case of α‐DAB and a c‐glide plane in the case of β‐DAB, lead to a more symmetric (α‐DAB) or asymmetric (β‐DAB) intermolecular hydrogen‐bonding pattern for each molecule.  相似文献   

2.
Two α-septithiophenes substituted at the third position of the middle ring with polyethyleneglycol of different molecular weights (PEG 1000 and PEG 2000) were synthesized using Suzuki condensation. Their structural characterization was performed by 1H NMR and FT-IR. The thermal behavior of the new synthesized oligothiophenes was investigated by differential scanning calorimetry (DSC) and thermogravimetrical (TGA) analysis. Photophysical properties in solutions were evaluated by UV-vis and fluorescence measurements using different solvents. The amphiphilic nature of the synthesized oligothiophenes and the presence of the PEG side chains induced self-dispersibility in water and the possibility of fluorescent nanoparticles forming by self-assembling. The size of nanoparticles in water was assessed by DLS and AFM investigations.  相似文献   

3.
Hexakis[p-(hydroxylmethyl)phenoxy]cyclotriphosphazene was synthesized by the reaction of hexachlorocyclotriphosphazene with the sodium salt of 4-hydroxybenzaldehyde and subsequent reduction of aldehyde groups to alcohol groups by using sodium borohydride. This compound was employed in initiating the ring-opening polymerization of ε-caprolactone. The resulting polymers were characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC). The characterization data indicated the star-shaped PCL with phosphazene core were successfully synthesized with narrow molecular weight distribution and high yields. 1H-NMR analysis was used to calculate the number-average molecular weight. The calculated result from NMR was closer to the theoretical data than that from GPC analysis. Polarizing optical microscopy (POM) combined with differential scanning calorimetry (DSC) was used to study the crystallization behavior of the star-shaped PCL. The result indicated that the highly branched architecture of star-shaped PCL resulted in interrupted crystallization form and subsequently lower melting temperature. Thermogravimetric analysis (TGA) carried out on the star-shaped PCL suggested that introduction of phosphazene rings strengthen the thermal stability of the resulting polymers.  相似文献   

4.
This paper describes the thermodynamic characterization of the self-assembly of a Zn trisporphyrin induced by coordination with 1,4-diazabicyclo[2.2.2]octane (DABCO) to form a stable 2:3 double-decker molecular coordination cage that recognizes benzene-1,3,5-tricarboxamides. The self-assembly process has been studied using UV-vis and (1)H NMR spectroscopy and quantitatively characterized in terms of a single stability constant that describes the strength of the individual coordination interactions and two effective molarities (EM) that describe the additional stability imparted by intramolecular cyclization. The EM values of the two consecutive cyclic intramolecular interactions are very similar. At micromolar concentrations, the formation of the fully assembled coordination cage is highly favored over the formation of intermediate species stabilized by fewer interactions, and so self-assembly is an all-or-nothing process. In contrast, at millimolar concentrations, the relative stability of intermediate species increases, leading to a stepwise self-assembly process, and a 2:2 intermediate can be clearly identified using (1)H NMR spectroscopy. The molecular recognition of benzene-1,3,5-tricarboxamides by the cage was investigated using (1)H NMR spectroscopy. The tricarboxamides bind inside the central cavity of the cage complex, and isothermal titration calorimetry (ITC) allowed the quantification of the stoichiometry and binding affinities.  相似文献   

5.
A major challenge in magnetic nanoparticle synthesis and (bio)functionalization concerns the precise characterization of the nanoparticle surface ligands. We report the first analytical NMR investigation of organic ligands stably anchored on the surface of superparamagnetic nanoparticles (MNPs) through the development of a new experimental application of high-resolution magic-angle spinning (HRMAS). The conceptual advance here is that the HRMAS technique, already being used for MAS NMR analysis of gels and semisolid matrixes, enables the fine-structure-resolved characterization of even complex organic molecules bound to paramagnetic nanocrystals, such as nanosized iron oxides, by strongly decreasing the effects of paramagnetic disturbances. This method led to detail-rich, well-resolved (1)H NMR spectra, often with highly structured first-order couplings, essential in the interpretation of the data. This HRMAS application was first evaluated and optimized using simple ligands widely used as surfactants in MNP synthesis and conjugation. Next, the methodology was assessed through the structure determination of complex molecular architectures, such as those involved in MNP3 and MNP4. The comparison with conventional probes evidences that HRMAS makes it possible to work with considerably higher concentrations, thus avoiding the loss of structural information. Consistent 2D homonuclear (1)H- (1)H and (1)H- (13)C heteronuclear single-quantum coherence correlation spectra were also obtained, providing reliable elements on proton signal assignments and carbon characterization and opening the way to (13)C NMR determination. Notably, combining the experimental evidence from HRMAS (1)H NMR and diffusion-ordered spectroscopy performed on the hybrid nanoparticle dispersion confirmed that the ligands were tightly bound to the particle surface when they were dispersed in a ligand-free solvent, while they rapidly exchanged when an excess of free ligand was present in solution. In addition to HRMAS NMR, matrix-assisted laser desorption ionization time-of-flight MS analysis of modified MNPs proved very valuable in ligand mass identification, thus giving a sound support to NMR characterization achievements.  相似文献   

6.
This contribution details the synthesis and chemical/physical characterization of a series of unconventional twisted pi-electron system electro-optic (EO) chromophores. Crystallographic analysis of these chromophores reveals large ring-ring dihedral twist angles (80-89 degrees) and a highly charge-separated zwitterionic structure dominating the ground state. NOE NMR measurements of the twist angle in solution confirm that the solid-state twisting persists essentially unchanged in solution. Optical, IR, and NMR spectroscopic studies in both the solution phase and solid state further substantiate that the solid-state structural characteristics persist in solution. The aggregation of these highly polar zwitterions is investigated using several experimental techniques, including concentration-dependent optical and fluorescence spectroscopy and pulsed field gradient spin-echo (PGSE) NMR spectroscopy in combination with solid-state data. These studies reveal clear evidence of the formation of centrosymmetric aggregates in concentrated solutions and in the solid state and provide quantitative information on the extent of aggregation. Solution-phase DC electric-field-induced second-harmonic generation (EFISH) measurements reveal unprecedented hyperpolarizabilities (nonresonant mubeta as high as -488,000 x 10(-48) esu at 1907 nm). Incorporation of these chromophores into guest-host poled polyvinylphenol films provides very large electro-optic coefficients (r(33)) of approximately 330 pm/V at 1310 nm. The aggregation and structure-property effects on the observed linear/nonlinear optical properties are discussed. High-level computations based on state-averaged complete active space self-consistent field (SA-CASSCF) methods provide a new rationale for these exceptional hyperpolarizabilities and demonstrate significant solvation effects on hyperpolarizabilities, in good agreement with experiment. As such, this work suggests new paradigms for molecular hyperpolarizabilities and electro-optics.  相似文献   

7.
In NMR spectroscopy, residual dipolar couplings (RDCs) have emerged as one of the most exquisite probes of biological structure and dynamics. The measurement of RDCs relies on the partial alignment of the molecule of interest, for example by using a liquid crystal as a solvent. Here, we establish bacterial type 1 pili as an alternative liquid-crystalline alignment medium for the measurement of RDCs. To achieve alignment at pilus concentrations that allow for efficient NMR sample preparation, we elongated wild-type pili by recombinant overproduction of the main structural pilus subunit. Building on the extraordinary stability of type 1 pili against spontaneous dissociation and unfolding, we show that the medium is compatible with challenging experimental conditions such as high temperature, the presence of detergents, organic solvents or very acidic pH, setting it apart from most established alignment media. Using human ubiquitin, HIV-1 TAR RNA and camphor as spectroscopic probes, we demonstrate the applicability of the medium for the determination of RDCs of proteins, nucleic acids and small molecules. Our results show that type 1 pili represent a very useful alternative to existing alignment media and may readily assist the characterization of molecular structure and dynamics by NMR.  相似文献   

8.
Six well defined PS‐b‐PB1,2 diblock copolymers (PS: polystyrene and PB: polybutadiene) with almost 100% of 1,2 microstructure for the PB segment were synthesized. Size exclusion chromatography (SEC), membrane osmometry (MO) and proton nuclear magnetic resonance spectroscopy (1H NMR) were used for verification of the molecular characteristics and the 100% ‐1,2 addition for the PB blocks. Modification with heptanoyl or pentadecafluorooctanoyl chloride was accomplished via hydroboration and subsequent oxidation, leading to hydroxylated PB blocks and was verified with 1H NMR and Fourier transform infrared (FTIR) spectroscopy. Only two samples were modified with both organic acid chloride derivatives. Structural characterization was accomplished via transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) in all cases. The self‐assembly was more evident in the modified copolymers with the corresponding halides due to the increase of the molecular weight of the modified PB block. Taking into consideration the χN values in each case and comparing the results with those of PS‐b‐PI copolymers already reported in the literature the discrepancies with the theoretical predictions are very small or minimal. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Summary The precision and accuracy of site-specific and average hydrogen isotope ratios determined by NMR are checked according to the ISO norms. The consistency of the results is investigated by comparison with the values of the mean isotope ratios measured by mass spectrometry. Several kinds of molecular species from different natural origins have been studied: water, ethanol, anethol, vanillin. A very good agreement between MS and NMR results is found for water. The limitations and advantages of NMR for the determination of average deuterium contents of organic molecules are discussed. A satisfactory precision of the NMR measurements can usually be reached, however systematic deviations of a few ppm between MS and NMR results may occur. By using either MS or NMR mean isotope ratios, site-specific parameters can be obtained by SNIF-NMR with an accuracy which is strongly dependent on the structure of the molecular species. The role and the importance of the reference materials in quantitative isotope determinations are stressed.
Genauigkeit, Richtigkeit und Verifizierung von Isotopenverhältnissen mit Hilfe der NMR-Spektroskopie
  相似文献   

10.
Fast field cycling (FFC) and quantitative magnetization transfer (qMT) NMR methods are two powerful tools in NMR analysis of biological tissues. The qMT method is well established in biomedical NMR applications, while the FFC method is often used in investigations of molecular dynamics on which longitudinal NMR relaxation times of the investigated material critically depend. Despite their proven analytical potential, these two methods were rarely used in NMR studies of food, especially when combined together. In our study, we demonstrate the feasibility of a combined FFC/qMT‐NMR approach for the fast and nondestructive characterization of dry‐curing ham tissues differing by protein content. The characterization is based on quantifying the pure quadrupolar peak area (area under the quadrupolar contribution of dispersion curve obtained by FFC‐NMR) and the restricted magnetization pool size (obtained by qMT‐NMR). Both quantities correlate well with concentration of partially immobilized, nitrogen‐containing and proton magnetization exchanging muscle proteins. Therefore, these two quantities could serve as potential markers for dry‐curing process monitoring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials.  相似文献   

12.
The controlled synthesis and characterization of a range of stimuli responsive cationic terpolymers containing varying amounts of N‐isopropylacrylamide (NIPAM), 3‐(methylacryloylamino)propyl trimethylammonium chloride (MAPTAC), and poly(ethylene glycol)monomethyl methacrylate (PEGMA) is presented. The terpolymers were synthesized using reversible addition‐fragmentation chain transfer (RAFT) polymerization. Compositions of the terpolymers determined using 1H NMR were in close agreement to the theoretical values determined from the monomer feed ratios. GPC‐MALLS was used to analyze the molecular weight characteristics of the polymers, which were found to have low polydispersities (Mw/Mn 1.1–1.4). The phase transitions were studied as a function of PEGMA and NIPAM content using temperature controlled 1H NMR and turbidity measurements (UV‐Vis). The relationship between thermal stability and the comonomer ratio of the polymers was measured using thermogravimetric analysis (TGA). Protein interaction studies were performed to determine the suitability of the polymers for biological applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4021–4029, 2008  相似文献   

13.
The molecular geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis spectra, HOMO-LUMO analyses, molecular electrostatic potentials (MEPs), , thermodynamic properties and atomic charges of 3- and 4-Nitrobenzaldehyde oxime (C7H6N2O3) molecules have been investigated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with the 6-311++G(d, p) basis set. The calculated optimized geometric parameters (bond lengths and bond angles), the vibrational frequencies calculated and 13C and 1H NMR chemical shifts values for the mentioned compounds are in a very good agreement with the experimental data. Furthermore, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been simulated and the transition states, energy band gaps and molecular electrostatic potential (MEP) maps for each oxime compound have been determined. Additionally, we also report the infrared intensities and Raman activities for the compounds under study.  相似文献   

14.
The isolation and purification of sufficient quantities of heparin-derived oligosaccharides for characterization by NMR is a tedious and time-consuming process. In addition, the structural complexity and microheterogeneity of heparin makes its characterization a challenging task. The improved mass-sensitivity of microcoil NMR probe technology makes this technique well suited for characterization of mass-limited heparin-derived oligosaccharides. Although microcoil probes have poorer concentration sensitivity than conventional NMR probes, this limitation can be overcome by coupling capillary isotachophoresis (cITP) with on-line microcoil NMR detection (cITP-NMR). Strategies to improve the sensitivity of on-line NMR detection through changes in probe design and in the cITP-NMR experimental protocol are discussed. These improvements in sensitivity allow acquisition of cITP-NMR survey spectra facilitating tentative identification of unknown oligosaccharides. Complete structure elucidation for microgram quantities of the purified material can be carried out through acquisition of 2D NMR spectra using a CapNMR microcoil probe. Survey NMR spectrum obtained by cITP-NMR using a second-generation probe (the microcoil of which is shown) facilitates tentative identification of unknown oligosaccharides (e.g., the heparin-derived tetrasaccharide illustrated)  相似文献   

15.
The preparation of two new 1,3,2-diazaphospholidine-2,4,5-triones is reported. Thus, 2-chloro-1,3,2-diazaphospholidine-2,4,5-trione [ClP(O)(NHC(O)C(O)NH) (I)] and 2-benzylamino-1,3,2-diazaphospholidine-2,4,5-trione [C6H5CH2NHP(O)(NHC(O)C(O)NH) (II)] have been synthesized by the reaction of POCl3 with the corresponding carboxylic diamide salts. The characterization of the compound I was performed by multinuclear (1H, 13C, 31P) NMR and FTIR spectroscopies, elemental analysis and also mass spectrometry. Both compounds show two signals at room temperature in the low field region of the 1H NMR spectrum, which collapsed to a single peak when the temperature is increased. Dynamic NMR (1H DNMR) and quantum chemical studies were performed to gain insight from this conversion process. The free activation energies, calculated at the coalescence temperatures are 18.51 and 17.45 kcal/mol for compounds (I) and (II), respectively, which are associated with a tautomeric interconversion process, most likely between the lactam and lactim forms. The relative energy, molecular geometry and vibrational properties of several plausible tautomers were analyzed by using quantum chemical calculations at the HF/6-311G** and B3LYP/6-311++G** levels of the theory. The nuclear magnetic shielding tensors have been calculated for both tautomeric forms using the gauge independent atomic orbital (GIAO) method at the B3LYP/6-311++G(3df,2p) level of approximation. A biological activity prediction using the PASS software shows that compound (I) can be characterized by a superb anti-HIV activity whereas compound (II) is a very good antineoplastic.  相似文献   

16.
Anthracene is one of the organic molecular crystals, which exhibits peculiar optical and electronic properties. Since the 9, 10 positions are very reactive in anthracene, it undergoes the Diel’s–Alder reaction with maleic anhydride in 99% yield. The synthesis of Diel’s–Alder adduct has been carried out by adopting standard procedure. The product was subjected to various characterization studies such as FTIR, UV and 1H NMR spectroscopy, and thermal studies to check its purity and determine the applicability of adduct in various applications. The second harmonic generation (SHG) efficiency of the adduct has been observed using Nd:YAG laser.  相似文献   

17.
Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.  相似文献   

18.
Electrospray ionization time-of-flight mass spectrometry (ESI-ToF-MS) has been successfully employed for the characterization of molecular weight, molecular weight distribution and end groups for bromine-terminated perfluoroalkyl acrylate oligomers prepared using atom transfer radical polymerization. Intact oligomers and smaller quantities of common side products were observed from m/z 1000 to 4000 cationized with a sodium ion, a difluorobenzyl cation or a proton with a minimum of multiply charged species. Number average molecular weight and weight average molecular weight for both the samples that were characterized were in reasonable agreement with independent measurements conducted using GPC-MALS and (1)H NMR spectroscopy.  相似文献   

19.
The synthesis, characterization and the self-assembly process of a novel biodegradable block copolymer containing a poly(epsilon-caprolactone), PCL, central block and three poly(N-vinyl-2-pyrrolidone), PVP, arms are reported. Three samples with different amounts of PVP were investigated. The copolymers were characterized by FTIR spectroscopy, (1)H NMR and viscosity measurements. The composition and the molecular weights of the block copolymers were established using size exclusion chromatography SEC and (1)H NMR. Micelle formation by these copolymers was monitored by using the vibrational fine structure of pyrene monomer fluorescence and the critical aggregation concentrations, cac, of the copolymers in aqueous solution were determined using sigmoid Boltzmann-type fitting of the fluorescence data. Dynamic light scattering measurements showed a bimodal size distribution for the copolymers in solution, indicating that the micellization is an intermolecular process. Partitioning coefficients of pyrene between copolymer micelles and water were also determined and increase in magnitude with increasing epsilon-caprolactone content of the copolymer.  相似文献   

20.
In a course of development and preparation of landiolol (1a), a known ultra‐short‐acting β‐blocker, process quality control by HPLC and LC‐MS analysis consistently showed an impurity peak ranging from 0.05% to 0.15 % and exhibiting a molecular mass m/z 887. To identify the hitherto unknown impurity, we prepared one of the possible landiolol derivatives with the same molecular mass for proper spectral characterization (NMR and MS). Its equivalence with the unknown impurity was then confirmed by LC‐MS analysis. Ultimately, using fragmentation patterns in LC‐MS and selective two‐dimensional NMR experiments, the structure of the impurity was assigned as [(4S)‐2,2‐dimethyl‐1,3‐dioxolan‐4‐yl]methyl 3‐{4‐[(2S)‐2‐hydroxy‐3‐(3‐{4‐[(2S)‐2‐hydroxy‐3‐[(2‐{[(morpholin‐4‐yl)carbonyl]amino}ethyl)amino]propoxy]phenyl}‐N‐(2‐{[(morpholin‐4‐yl)carbonyl]amino}ethyl)propanamido)propoxy]phenyl}propanoate (2). It was found that the impurity was present in two rotameric forms at room temperature. The synthesis and NMR characterization of (2) are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号