首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
采用基于单组分多相伪势模型的格子Boltzmann方法,模拟了三维液滴撞击左右两侧浸润性不同的倾斜固壁的铺展过程,获得了液滴在壁面两侧的铺展因子、相对铺展宽度、相对高度和液滴运动速度随时间的变化情况,研究了壁面浸润性分布和壁面倾斜角度对液滴铺展过程的影响.结果表明,液滴在倾斜壁面的铺展过程受到重力和表面力的综合作用,重力影响液滴的铺展和沿壁面向下的滑动,壁面浸润性分布影响液滴向壁面亲水侧横向移动.  相似文献   

2.
有限水深中二维湍流边界层的发展   总被引:1,自引:0,他引:1  
有限水深中湍流边界层主要是指水流在重力作用下绕建筑物流动时的边界层现象。它区别于一般在无限流场中绕流物体的边界层。它的特点是具有自由表面,边界层有可能发展至全部水深,质量力不容忽视,受到外流流速变化的影响。本实验采用激光流速仪量测二维明渠水流沿程各断面的流速分布,根据实验结果,分析研究了有限水深、粗糙壁面条件下,二维湍流边界层的流速分布特征和厚度发展规律,以及孤立粗糙体对此二者的影响。   相似文献   

3.
点载荷作用下密集颗粒物质的传力特性分析   总被引:2,自引:0,他引:2  
利用颗粒离散元商业软件PFC3D, 模拟了在2m*1m*0.01m容器中直径分别为0.01m, 0.008m和0.006m的颗粒各1*10$^4$个, 受重力作用下的静态密集堆积; 以此为初始条件, 在表层随机选择7个颗粒分别施加5.2*10$^{ - 2}$N(100倍最大颗粒重量)的点载荷, 进行应力传播特点研究. 结果表明: 力的传递在局部范围内呈现很强的各向异性; 应力涨落随着距离的增加呈指数下降; 在大于5倍最大颗粒粒径时, 其分布可以使用弹性力学理论来计算. 探讨了摩擦系数$\mu =0$, 0.2, 1对应力传递的影响, 随着摩擦系数的增加, 各向异性范围减小.  相似文献   

4.
生物芯片微通道周期性电渗流特性   总被引:5,自引:1,他引:4  
吴健康  王贤明 《力学学报》2006,38(3):309-315
以双电层的Poisson-Boltzmann方程和黏性不可压缩流体运动的Navier-Stokes方程为 基础,提出二维均匀微通道周期电渗流的解析解. 分析结果表明,周期电渗流速度大 小不但与双电层特性和外电场有关, 而且与流动雷诺数(Re = \omega h^2/\nu )密切相关. 随雷诺数增加,双电层滑移速度下降. 当离开固壁距离增加时,双电层以外区域流动速度快 速衰减,速度滞后相位角明显增加. 研究发现在微通道有波浪状速度剖面. 给出在低雷 诺数时的周期电渗流渐近解,它的速度振幅与定常电渗流速度相同,并具有柱栓式速度分布 形态. 还得到在微通道宽对双电层厚的比值(\kappa h)很小时,Debye-H\"{u}ckel近似 的周期电渗流解, 并与解析解进行分析比较 微通道,双电层,周期电渗流,雷诺数  相似文献   

5.
油-气润滑系统工作过程中,润滑油膜受微油滴冲击和压缩空气扰动影响易形成气泡夹带现象,气泡夹带行为将对壁面润滑油膜层的形成及流动过程产生重要影响。基于VOF数值模拟方法,对含气泡油膜沿倾斜壁面的流动行为进行研究,考察了气泡的存在对油膜形态和流动速度的影响规律,以及气泡破裂阶段空腔邻域内流体压力变化特性。研究表明,油膜夹带气泡的形变和迁移诱发气泡周围微流场的速度扰动现象,导致气液界面处产生非均匀速度梯度分布,进而引发油膜表面的形态波动。气泡发生破裂时,油膜空穴部位发生明显的正负压力波动现象,气泡附近壁面将承受一定的交变载荷作用。  相似文献   

6.
切应力协同下受热过冷层流液膜的破断特性   总被引:1,自引:0,他引:1  
针对界面切应力协同下受热过冷层流液膜流动的破断过程, 建立了不同气液流向下的临界液膜厚度和最小润湿量的理论模型, 分析了不同驱动力作用下, 接触角、流体温度、界面切应力和壁面热流密度对液膜破断特性的影响. 研究表明: 临界液膜厚度和最小润湿量均随壁面热流密度的增加而增大; 重力驱动下的接触角影响在不同热流密度下有所不同, 流体温度在不同驱动力下对最小润湿量的影响截然相反; 同向切应力驱动下临界液膜厚度和最小润湿量随切应力增加而减小; 在重力和切应力协同驱动下, 同向切应力对最小润湿量的影响与重力和切应力所起作用的相对大小有关, 反向切应力使得临界液膜厚度和最小润湿量有所增大.   相似文献   

7.
针对固体颗粒在圆管中的沉积问题,本文采用DEM(Discrete-Element Method)描述颗粒与壁面的碰撞特征,采用湍流雷诺应力模型结合拉格朗日随机轨道模型对0.01μm~50μm的微细颗粒在壁面的沉积特性进行了研究。考查了颗粒粒径、重力、壁面位置、雷诺数Re、有效表面能、弹性模量对沉积速率的影响。结果表明:下壁面的沉积速率最大,上壁面的最小;颗粒在下壁面的沉积速率随量纲为一的弛豫时间呈V型曲线变化;当空气平均流速为0.5m/s时,颗粒小于1μm时即可忽略重力的影响,并且随着空气流速的增大,需要考虑颗粒重力的临界直径会逐渐增大;颗粒的粘附/反弹特征对沉积有很大影响,有效表面能越大,沉积速率越大;有效弹性模量越大,沉积速率越小;当颗粒小于10μm时,沉积速率随雷诺数Re的增大而增大;当颗粒大于等于10μm时,沉积速率随雷诺数Re的增大而减小。  相似文献   

8.
分别从分子运动论及连续流理论出发,对体积力驱动的微尺度平面泊肃叶(Poiseuille)流的横向分布特征进行了分析. 分子水平模拟采用直接模拟蒙特卡罗(direct simulation Monte Carlo, DSMC)方法;连续流理论则主要考察了伯内特(Burnett)及超伯内特(Super-Burnett)等高阶连续模型,在平行流假设下,获得一组高阶非线性常微分方程,补充完整的边界条件,并应用龙格-库塔(Runge-Kutta)方法求解. 结果表明,即使对于过渡领域流动,高阶连续模型可以给出与DSMC 结果完全相符的压力分布,而速度分布当努森(Knudsen)数约为0.2时即在壁面开始出现偏差;对于温度的横向分布,伯内特模型回复到纳维-斯托克斯(Navier-Stokes)水平,不能得到与DSMC一致的双峰结构,而超伯内特模型在滑移流动领域与DSMC定性相符,在过渡领域却仅能正确预测主流区温度分布,壁面附近差异明显;横向热流与纳维-斯托克斯模型预测接近,但机理上存在本质区别. 本文结果提示选用连续模型时,不仅要根据流动参数来判断,还可以根据所关注的物理量来进行调整,适度扩大连续模型的适用范围. 但即使采用高阶本构关系,连续模型仍然不能完全描述壁面附近区域的非平衡效应(如努森层效应),这是试图扩大连续模型适用范围时必然会遇到的困难.  相似文献   

9.
固体边界具有的微纳米结构将影响流体在近壁面处的流动行为,进而由于尺度效应改变流体在整个微间隙的流动或润滑规律.将壁面可渗透微纳米结构等效为多孔介质薄膜,采用Brinkman方程来描述流体在近壁面边界渗透层内的流动,并将其与自由流动区域的不可压缩流体Navier-Stokes控制方程耦合,在界面处的连续边界条件下求解和分析了速度分布规律和压力变化规律.针对恒定法向承载力的油膜润滑条件,进一步讨论了静止表面或运动表面的微纳米结构对近壁面流动行为的影响;并揭示了考虑壁面微纳米结构的流体动压润滑的油膜厚度和摩擦系数的变化规律.论文结果为具有可渗透微结构表面的微间隙流动与润滑提供了理论参考.  相似文献   

10.
考虑表面蒸发压力和热毛细力作用情况下,对饱和蒸发状态下低雷诺数自由降落液膜在小波幅正弦型波纹壁面上的流动进行理论分析。对控制微分方程及边界条件进行量纲一化并引入流函数,对微分方程及边界条件进行摄动展开,得到了这种情况下液膜流动的简化分析模型,求出了近似解析解。讨论了壁面波纹、表面张力、蒸发压力、热毛细力对液膜流动的影响。研究表明:液膜的波动幅度随蒸发强度和热毛细力的增大而增大;液膜波动与壁面波纹的相位差随蒸发强度增大而增大,随热毛细力增大而减小。  相似文献   

11.
MHD控制超声速边界层的理论研究和数值分析   总被引:2,自引:0,他引:2  
对MHD(mechanisms of magnetohy drodynamics)控制超声速平板湍流边界层的机理进行了理论研究和数值模拟. 理论上,采用等离子体低频近似碰撞频率模型,建立等离子体中电子和离子的力平衡方程,得到等离子体速度、极化电场以及边界层速度. 数值上,通过空间HLLE格式、LU--SGS时间推进求解时均磁流体动力学湍流方程,其中湍流模型采用sst--k\omega双方程模型. 研究结果表明:(1)边界层速度的理论结果和数值结果误差在7%范围内;(2)只有磁场而电场为零时,洛仑兹力起到减小摩阻的作用. 施加电场后,洛仑兹力能够加速边界层低速区流体;(3) 在边界层外层,越靠近壁面,作用参数越小;而在边界层近壁区黏性底层,虽然惯性力减小, 但黏性力却迅速增加,因此越靠近壁面,作用参数反而越大,加速低速流的代价增加.   相似文献   

12.
RESISTANCE EFFECT OF ELECTRIC DOUBLE LAYER ON LIQUID FLOW IN MICROCHANNEL   总被引:1,自引:0,他引:1  
Poisson-Boltzrnann equation for EDL (electric double layer) and Navier-Stokes equation for liquid flows were numerically solved to investigate resistance effect of electric double layer on liquid flow in microchannel. The dimension analysis indicates that the resistance effect of electric double layer can be estimated by an electric resistance number, which is proportional to the square of the liquid dielectric constant and the solid surface zeta potential, and inverse-proportional to the liquid dynamic viscosity, electric conductivity and the square of the channel width. An "electric current density balancing" (ECDB) condition was proposed to evaluate the flow-induced streaming potential, instead of conventional "electric current balancing" (ECB) condition which may induce spurious local backflow in neighborhood of the solid wall of the microchannel. The numerical results of the flow rate loss ratio and velocity profile are also given to demonstrate the resistance effect of electric double layer in microchannel.  相似文献   

13.
The mechanisms of development of slow time-dependent disturbances in the wall region of a hypersonic boundary layer are established and a diagram of the disturbed flow patterns is plotted; the corresponding nonlinear boundary value problem is formulated for each of these regimes. It is shown that the main factors that form the disturbed flow are the gas enthalpy near the body surface, the local viscous-inviscid interaction level, and the type, either subsonic or supersonic, of the boundary layer as a whole. Numerical and analytical solutions are obtained in the linear approximation. It is established that enhancement of the local viscous-inviscid interaction or an increased role for the main supersonic region of the boundary layer makes the disturbed flow by and large “supersonic”: the upstream propagation of the disturbances becomes weaker, while their downstream growth is amplified. Contrariwise, local viscous-inviscid interaction attenuation or an increased role for the main subsonic region of the boundary layer has the opposite effect. Surface cooling favors an increased effect of the main region of the boundary layer while heating favors an increased wall region effect. It is also found that in the regimes considered disturbances travel from the turbulent flow region downstream of the disturbed region under consideration counter to the oncoming flow, which may be of considerable significance in constructing the nonlinear stability theory.  相似文献   

14.
在纳米间隙条件下,以楔型滑块和双轨式磁头为例,推导出楔型及双轨式磁头范德华力的计算公式,考察了范德华力对计算机磁头/磁盘超薄气膜承载性能的影响.结果表明,范德华力对计算机磁头/磁盘的承载性能影响很大,范德华力可以降低磁头的承载能力,尤其在最小空气间隙小于6 nm时;在相同尺寸的磁头中,双轨式磁头的范德华力小于楔型滑块的范德华力,而前者的承载力大于后者,双轨式磁头的范德华力对其承载性能影响较小.范德华力可以使飞行高度降低,为磁头设计和磁头/磁盘装配的重要依据.  相似文献   

15.
This paper presents an analytical solution to periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson-Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow. Dimensional analysis indicates that electric-viscous force depends on three factors: (1) Electric-viscous number representing a ratio between maximum of electric-viscous force and pressure gradient in a steady state, (2) profile function describing the distribution profile of electro-viscous force in channel section, and (3) coupling coefficient reflecting behavior of arnplitude damping and phase offset of electro-viscous force. Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number (Re = wh^2/v). Flow-induced electric field varies very slowly with Re when Re 〈 1, and rapidly decreases when Re 〉 1. Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.  相似文献   

16.
This paper presents an analytical solution to periodical streaming potential,flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson.Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow.Dimensional analysis indicates that electric-Viscous force depends on three factors:(1)Electric-viscous number representing a ratio between maximum of electric-viscous force and pressure gradient in a steady state,(2)profile function describing the distribution profile of electro-viscous forcein channel section,and(3)coupling coefficient reflecting behavior of amplitude damping and phase Offset of electro-viscous force.Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number(Re=wh2/v).Flow-induced electric field varies very slowly with Re when Re<1.and rapidly decreases when Re>1.Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.  相似文献   

17.
The interaction of streamwise vortices with turbulent boundary layer has been investigated using large-eddy simulation. The initial conditions are a pair of counterrotating Oseen vortices with flow between them directed toward the wall (common-flow-down), superimposed on various instantaneous realizations of a turbulent boundary layer. The time development of the vortices and their interaction with the boundary layer are studied by integrating the filtered Navier-Stokes equations in time. The most important effects of the vortices on the boundary layer are the thinning of the boundary layer between vortices (downwash region) and the thickening of the boundary layer in the upwash region. The vortices first move toward the wall as a result of the self-induced velocity, and then apart from each other because of the image vortices due to the solid wall. The Reynolds stress profiles highlight the highly three-dimensional structure of the turbulent boundary layer modified by the vortices. The presence of significant turbulent activity near the vortex center and in the upwash region suggests that localized instability mechanisms in addition to the convection of turbulent energy by the secondary flow are responsible for this effect. High levels of turbulent kinetic energy and secondary stresses in the vicinity of the vortex center are also observed. The numerical results show good agreement with experimental results.This work was supported by the Office of Naval Research under Grant N00014-89-J-1638. Computer time was supplied by the San Diego Supercomputing Center.  相似文献   

18.
Measurements of the spatial and time variation of two components of the velocity have been made over a sinusoidal solid wavy boundary with a height to length ratio of 2a/λ = 0.10 and with a dimensionless wave number of α+ = (2π/λ)(v/u ?) = 0.02. For these conditions, both intermittent and time-mean flow reversals are observed near the troughs of the waves. Statistical quantities that are determined are the mean streamwise and normal velocities, the root-meansquare of the fluctuations of the streamwise and normal velocities, and the Reynolds shear stresses. Turbulence production is calculated from these measurements. The flow is characterized by an outer flow and by an inner flow extending to a distance of about α?1 from the mean level of the surface. Turbulence production in the inner region is fundamentally different from flow over a flat surface in that it is mainly associated with a shear layer that separates from the back of the wave. Flow close to the surface is best described by an interaction between the shear layer and the wall, which produces a retarded zone and a boundary-layer with large wall shear stresses. Measurements of the outer flow compare favorably with measurements over a flat wall if velocities are made dimensionless by a friction velocity defined with a shear stress obtained by extrapolating measurements of the Reynolds stress to the mean levels of the surface (rather than from the drag on the wall).  相似文献   

19.
This paper experimentally investigated the effect of rotating on the turbulent boundary layer flow using hot-wire. The experiments were completed in a rotating rig with a vertical axis and four measured positions along the streamwise direction in channel, which focuses on the flow flied in the rotating channel. The rotating effects on velocity profile, wall shear stress and semi-logarithmic mean velocity profile are discussed in this paper. The results indicated that: due to the Coriolis force induced by rotating, the phenomenon of velocity deficit happens near the leading side. The velocity deficit near the leading side, do not increase monotonically with the increase of Ro. The trend of the velocity deficit near the leading side is also affected by the normal component of pressure gradient, which is another important force in the cross-section of the rotating channel. The wall shear stress near the trailing side is larger than that on the leading side, and the semi-logarithmic mean velocity profile is also different under rotating effects. The phenomenon reveals that the effect of rotation penetrates into the logarithm region, and the flow near the leading side tends to turn into laminar under the effect of rotation. The rotation correction of logarithmic law is performed in current work, which can be used in the wall function of CFD to increase the simulating accuracy at rotating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号