首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a new kind of electrochemical immunosensors for simultaneous determination of the biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP). Thionine and ferrocene were applied as distinguishable electrochemical tags (and mediators) which were covalently conjugated on anti-AFP and anti-CEA antibodies, respectively, via carboxy groups. The resulting conjugates were co-immobilized on a glassy carbon electrode functionalized with gold nanoparticles. Finally, horseradish peroxidase (HRP) was immobilized onto the modified electrode. Labeled thionine and ferrocene, respectively, act as distinguishable tags for simultaneous determination of AFP and CEA due to the difference in the location of their voltammetric peaks. With a one-step immunoassay format, the analytes in the sample produced transparent immunoaffinity reaction with the corresponding antibodies on the electrode. Once the immunocomplex is formed, it partially inhibits the active center of the immobilized HRP, and this decreased the activity of HRP in terms of reduction of hydrogen peroxide. This immunosensor enables the simultaneous determination of AFP and CEA in a single run and within the same dynamic range (0.01–50?ng?mL?1) and the same lower detection limit (0.01?ng?mL?1). The reproducibility and stability of the immunosensors are acceptable. The dual immunosensor was applied to evaluate several specimens, and the assay results are in acceptable agreement with clinical data.
Figure
This contribution devises a novel multiplexed electrochemical immunoassay for simultaneous detection of alpha-fetoprotein and carcinoembryonic antigen by using thionine and ferrocene as distinguishable signal tags on a one-spot immunosensor. The assay was performed by using one-step immunoreaction between the immobilized antibodies and the analytes. Although the linear range is relatively narrow, it completely meets the requirement of clinical diagnosis.  相似文献   

2.
An immunosensor was prepared for the determination of carcinoembryonic antigen (CEA). It is based on the use of multiwalled carbon nanotubes (MWCNTs) along with horseradish peroxidase-labeled antibody. The enzyme was assembled onto MWCNTs templates using the layer-by-layer technique and then conjugated to carcinoembryonic secondary antibodies (Ab2) as the enzyme label. The resulting assembly results in a largely amplified sensitivity. The response is linear in the range of 0.05 to 45?ng?mL-1, with a detection limit of 16.0?pg?mL-1. The immunosensor possesses good stability and good reproducibility.
Figure
A new immunosensor with double-layer enzyme-modified carbon nanotubes as label for sandwich-type tumor markers was proposed in this study  相似文献   

3.
We report on a sensitive electrochemical immunoassay for the prostate specific antigen (PSA). An immunoelectrode was fabricated by coating a glassy carbon electrode with multiwalled carbon nanotubes, poly(dimethyldiallylammonium chloride), CeO2 and PSA antibody (in this order) using the layer-by-layer method. The immunosensor is then placed in a sample solution containing PSA and o-phenylenediamine (OPD). It is found that the CeO2 nanoparticles facilitate the electrochemical oxidation of OPD, and this produces a signal for electrochemical detection of PSA that depends on the concentration of PSA. There is a linear relationship between the decrease in current and the concentration of PSA in the 0.01 to 1,000 pg mL?1 concentration range, and the detection limit is 4 fg mL?1. The assay was successfully applied to the detection of PSA in serum samples. This new differential pulse voltammetric immunoassay is sensitive and acceptably precise, and the fabrication of the electrode is well reproducible. Figure
A novel electrochemical immunoassay for prostate specific antigen (PSA) was developed. Ceria (CeO2) mesoporous nanospheres facilitated the electrochemical oxidation of o-phenylenediamine (OPD). The developed immunoassay has high sensitivity and can be successfully applied for the detection of PSA in serum samples  相似文献   

4.
An electrochemiluminescence-based immunoassay using quantum dots (QDs) as labels for the carcinoembryonic antigen (CEA) was developed using an electrode modified with leafs of nanoporous gold. CEA was initially immobilized on the electrode via a sandwich immunoreaction, and then CdTe quantum dots capped with thioglycolic acid were used to label the second antibody. The intensity of the ECL of the QDs reflects the quantity of CEA immobilized on the electrode. Thus, in the presence of dithiopersulfate as the coreactant, the ECL serves as the signal for the determination of CEA. The intensity of the electroluminescence (ECL) of the electrode was about 5.5-fold higher than that obtained with a bare gold electrode. The relation between ECL intensity and CEA concentration is linear in the range from 0.05 to 200?ng.mL-1, and the detection limit is 0.01?ng.mL-1. The method has the advantages of high sensitivity, good reproducibility and long-term stability, and paves a new avenue for applying quantum dots in ECL-based bioassays.
Figure
Electrochemiluminescence Immunoassay Based on CdTe Quantun Dots as labels at Nanoporous Gold Leaf electrode  相似文献   

5.
An amperometric immunosensor has been developed for sensitive determination of hepatitis B surface antigen as a model protein. A glassy carbon electrode was modified with an assembly of positively charged poly(allylamine)-branched ferrocene (PAA-Fc) and negatively charged gold nanoparticles (Au NPs). The formation of PAA-Fc effectively avoids the leakage of Fc, retains its electrochemical activity, and enhances the conductivity of the composite. The adsorption of Au NPs onto the PAA-Fc matrix provides sites for the immobilization of the antigen and a favorable micro-environment to maintain its activity. The morphologies and electrochemistry of the sensing film were investigated via scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Factors influencing the performance of the immunosensor were studied in detail. The concentration of the antigen can be quantitated (by measuring the decrease of the amperometric response resulting from the specific binding between antigen and antibody) in the range between 0.1 and 150?ng?mL?C1, with a detection limit of 40?pg?mL?C1 (S/N = 3). The method is economical, efficient, and potentially attractive for clinical immunoassays.
Figure
A novel and sensitive amperometric immunosensor based on the assembly of biocompatible positively charged poly(allylamine)-branched ferrocene and negatively charged Au nanoparticles onto a glassy carbon electrode has been developed for sensitive determination of hepatitis B surface antigen as a model protein.  相似文献   

6.
We report on a multiplex bead-based competitive immunoassay using suspension array technology for the simultaneous detection of the pesticides triazophos, carbofuran and chlorpyrifos. Three hapten-protein conjugates were covalently bound to carboxylated fluorescent microspheres to serve as probes. The amount of conjugates and antibodies were optimized. The new multi-analyte assay has dynamic ranges of 0.02–50 ng?mL?1, 0.5–500 ng?mL?1 and 1.0–1000 ng?mL?1 for triazophos, carbofuran and chlorpyrifos, respectively, and the detection limits are 0.024, 0.93 and 1.68 ng?mL?1. This new multiplex assay is superior to the traditional ELISA in possessing a wider detection range, better reproducibility and the feature of multi-target detection. Cross-reactivity studies indicated that the bead-array method is highly selective for the three target pesticides, and that individual analyses have no significant influence between each other, also without cross-reactions from other structurally related pesticides. The method was applied to analyze vegetables spiked with the three pesticides, and the recoveries were in ranges of 78.5–112.1 %, 72.2–120.2 % and 70.2–112.8 %, respectively, with mean coefficients of variation of <15 %.
Figure
Schematic illustration of the multiplex bead-based competitive immunoassay  相似文献   

7.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

8.
We report on a lateral flow immunoassay (LFIA) for influenza A antigen using fluorescently-doped silica nanoparticles as reporters. The method is taking advantage of the high brightness and photostability of silica nanoparticles (doped with the dye Cy5) and the simplicity and rapidity of LFIA. The nucleoprotein of influenza A virion (one of its most abundant structural proteins) was used as a model to demonstrate a performance of the LFIA. Under optimized conditions and by using a portable strip reader, the fluorescence-based LFIA is capable of detecting a recombinant nucleoprotein as low as 250 ng?·?mL-1 using a sample volume of 100 μL, within 30 min, and without interference by other proteins. The successful detection of the nucleoprotein in infected allantoic fluid demonstrated the functionality of the method. By comparison with a commercial influenza A test based on gold nanoparticles as reporters, the system provides an 8-fold better sensitivity.
Figure
A rapid and sensitive lateral flow immunoassay for influenza A antigen was developed using fluorescently-doped silica nanoparticles. A sample containing nucleoprotein as a target analyte induced an accumulation of the fluorescent conjugates at the test spot. The signal was then measured quantitatively using a portable strip reader.  相似文献   

9.
We report on the modification of a graphene paste electrode with gold nanoparticles (AuNPs) and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen (HBsAg). To obtain the immunosensor, an antibody against HBsAg was immobilized on the surface of the electrode, and this process was followed by cyclic voltammetry and electrochemical impedance spectroscopy. The peak currents of a hexacyanoferrate redox system decreased on formation of the antibody-antigen complex on the surface of the electrode. Then increased electrochemical response is thought to result from a combination of beneficial effects including the biocompatibility and large surface area of the AuNPs, the high conductivity of the graphene paste electrode, the synergistic effects of composite film, and the increased quantity of HBsAb adsorbed on the electrode surface. The differential pulse voltammetric responses of the hexacyanoferrate redox pair are proportional to the concentration of HBsAg in the range from 0.5–800?ng?mL?1, and the detection limit is 0.1?ng?mL?1 (at an S/N of 3). The immunosensor is sensitive and stable.
Figure
We report on the modification of a graphene paste electrode with gold nanoparticles and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen. The immunosensor is sensitive and stable.  相似文献   

10.
We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng?·?mL-1 concentration range, with a detection limit of 1.8 pg?·?mL-1.
Figure
The Fe3O4@C@CNC was prepared and applied in a CEA immunosensor with the help of a flow-injection photoluminescence system.  相似文献   

11.
Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20?ng?mL-1 and 2?ng?mL-1 of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH?4.0 ± 0.05.
Figure
Imidazole functionalized polyaniline modified glassy carbon and carbon paste electrodes were used for lead ion detection by using CV and DPASV techniques. The lower detection limit observed with GCE and CPE are 20?ng mL-1 and 2?ng mL-1.  相似文献   

12.
We have developed a resonance light scattering (RLS) quenching assay for the highly sensitive determination of doxorubicin (DOX) and daunorubicin (DAU). It is based on the reduction of the intensity of the shoulder of the RLS spectra at 443?nm. The intensity of the RLS of the ethidium-DNA system decrease linearly on addition of trace quantities of DOX or DAU within the concentration range of 0.008 to 12.0???g?mL?1 for DOX, and of 0.010 to 21.0???g?mL?1 for DAU. The detection limits are 3.0 and 5.0?ng?mL?1, respectively. The assay was successfully applied to the determination of DAU in synthetic and serum samples. Compared to the reported methods for anthracyclines, this assay displays higher sensitivity, lower detection limits, and a wider linear range.
Graphical abstract
The addition of trace amount of drugs into the EB-DNA system can induce the decreased RLS intensity of EB-DNA system at the shoulder peak in BR buffer solution (pH 2.0). Besides, the decrement of RLS intensities was proportional to the concentration of drugs. Based on this phenomenon, a new RLS assay for the detection of anthracycline antibiotics was developed.  相似文献   

13.
We present two kinds of electrochemical immunoassays for the tumor necrosis factor α (TNF-α) which is a protein biomarker. The antibody against TNF-α was immobilized on a graphite screen-printed electrode modified with poly-anthranilic acid (ASPE). The first is based on impedimetry (and thus label-free) and the target antigen (TNF-α) is captured by the surface of the modified electrode via an immunoreaction upon which impedance is changed. This sensing platform has a detection limit of 5.0 pg mL?1. In the second approach, the monoclonal antibodies on the modified electrode also bind to the target antigen (TNF-α), but detection is based on a sandwich immunoreaction. This is performed by first adding secondary anti-TNF-α antibodies labeled with horseradish peroxidase, and then detecting the response of the sandwich system by adding hydrogen peroxide and acetaminophen as a probe system for HRP activity. This immunosensor also has a very low detection limit (3.2 pg mL?1). The experimental conditions of both assays were studied and optimized via electrochemical impedance spectroscopy and differential pulse voltammetry. The method was then applied to the determination of TNF-α in serum samples where it displayed high sensitivity, selectivity and reproducibility.
Figure
A novel electrochemical immunosensor capable of sensitive and selective detection of tumor necrosis factor α is developed. It is based on the poly-anthranilic acid modified graphite screen-printed electrodes. Validation was made by analyzing human serum.  相似文献   

14.
An enzyme-linked immunosorbent assay, a horseradish peroxidase-catalyzed fluorogenic reaction, and chemiluminescence (CL) analysis have been combined to develop a sandwich ELISA for Staphylococcal enterotoxin B (SEB) using monoclonal antibodies for different epitopes of SEB. The enzyme catalyzed reaction of 3-(4-hydroxyphenyl propionate) with the urea complex of hydrogen peroxide produced a fluorescent dimer which was detected by chemiluminescence analysis. The CL response to SEB is linear in the range from 6.0 to 564?pg?mL?1 (r?=?0.9993), and the detection limit is 3.3?pg?mL?1 (S/N?=?3). Intra- and interassay coefficients of variation are <7.0% at three concentrations (24, 96 and 384?pg?mL?1). The method was applied to the analysis of SEB in serum, lake water and milk samples. The results compared well with those obtained by conventional ELISAs.
Figure
Procedures of the proposed method. A sandwich ELISA for Staphylococcal enterotoxin B (SEB) using a pair of monoclonal antibodies that recognizes different epitopes of SEB. After the ELISA procedure, PHPPA is reacted with Hydrogen peroxide-urea, with catalysis by HRP-conjugated anti-SEB, to produce PHPPA fluorescent Dimer, which is detected by TCPO chemiluminescence.  相似文献   

15.
A competitive microplate fluoroimmunoassay was developed for the determination of human serum albumin in urine. It is based on the use of biotinylated CdTe quantum dots (QDs) whose synthesis is optimised in terms of storage stability, purification, and signal-to-noise ratio. The bioconjugated QDs were characterised by gel chromatography and gel electrophoresis. Storage stability and quantum yield were investigated. The excitation/emission wavelengths are 360/620?nm. The immunoassay of human serum albumin in urine has a working range from 1.7 to 10?μg.mL?1, and the limit of detection is 1.0?μg.mL?1.
Figure
Preparation of biotinylated quantum dots is described. Their structure consists of biotinylated denatured bovine serum albumin attached to the quantum dot surface. Fluoroimmunoassay for human serum albumin was developed utilizing thus prepared bioconjugate.  相似文献   

16.
In this research, a mixed immunoassay design for multiple chemical residues detection based on combined reverse competitive enzyme-linked immunosorbent assay (ELISA) procedure was developed. This method integrated two reverse ELISA reactions in one assay by labeling horseradish peroxidase to deoxynivalenol (DON) and orbifloxacin. Within this method, IC50 of the two mAbs for each analyte we produced ranged from 23?~?68 ng?mL?1 for DONs and 4.1?~?49 ng?mL?1 for quinolones (QNs). The limit of detection measured by IC10 was achieved at 0.45–1.3 ng?mL?1 for DONs and 0.59–6.9 ng?mL?1 for QNs, which was lower than the maximum residue levels. Recoveries in negative samples spiked at concentrations of 100, 200, and 500 ng?mL?1 ranged from 91.3 to 102.2 % for DONs and 88.7–98.05 % for QNs with relative standard deviation less than 9.88 and 12.67 %. The results demonstrated that this developed immunoassay was suitable for screening of low molecular weight contaminants.
Figure
Combined reverse ELISA procedure for multi-chemical residues analysis  相似文献   

17.
We have developed a heterologous direct competitive enzyme-linked immunosorbent assay (ELISA) and a visual colloidal gold-based immunochromatographic assay (CGIA) for simultaneous determination of ofloxacin, marbofloxacin, and fleroxacin residues in milk using polyclonal antibodies. The half-maximum inhibition concentrations (IC50) of ofloxacin, marbofloxacin, fleroxacin, and limits of detection (LODs; calculated as IC15 values) are between 0.20 and 0.53?ng mL?1, and between 0.02 and 0.05?ng mL?1, respectively. The average recoveries range from of 78% to 113%, and the coefficients of variation of intra- and inter-assays are between 2 and 11%, and 3 to 19%, respectively. The LODs for ofloxacin, marbofloxacin, fleroxacin in milk are between 3.5 and 8.9?ng mL?1. The visual minimum detection limit of the optimized CGIA is 2?ng mL?1 for milk samples. The detection process can be completed within 10?min. The strips can be stored at 4?°C for 8?weeks without significant loss of activity. The results of the analysis of spiked samples showed that the CGIA can be applied to preliminary, fast, and on-site screening of milk samples. The ELISA and CGIA allow for a rapid, sensitive, and low-cost determination of (fluoro)quinolones residues in milk samples.
Figure
A direct competitive enzyme-linked immunosorbent assay (ELISA) and a visual colloidal gold-based immunochromatographic assay (CGIA) are proposed for simultaneous determination of ofloxacin, marbofloxacin, and fleroxacin residues in milk using polyclonal antibodies  相似文献   

18.
We describe a silver(I)-selective carbon paste electrode modified with multi-walled carbon nanotubes and a silver-chelating Schiff base, and its electrochemical response to Ag(I). Effects of reduction potential and time, accumulation time, pH of the solution and the stripping medium were studied by differential pulse anodic stripping voltammetry and optimized. The findings resulted in a method for the determination of silver over a linear response range (from 0.5 to 235 ng?mL?1) and with a detection limit as low as 0.08 ng?mL?1. The sensor displays good repeatability (with the RSD of ±?2.75 % for 7 replicates) and was applied to the determination of Ag(I) in water samples and X-ray photographic films.
Figure
Open circuit accumulation of Ag(I) onto a surface of EHPO-MCPE and determination by Differential pulse anodic stripping voltammetry  相似文献   

19.
We report on a protocol for a simultaneous competitive immunoassay for tetracycline (TC) and chloramphenicol (CAP) on the same sensing interface. Conjugates of TC and of CAP with bovine serum albumin were first co-immobilized on a glassy carbon electrode modified with gold nanoparticles. In parallel, monoclonal anti-TC and anti-CAP antibodies were conjugated onto CdS and PbS nanoclusters, respectively. In a typical assay, the immobilized haptens and the added target analytes competed for binding to the corresponding antibodies on the nanoclusters. Subsequently, Cd(II) and Pb(II) ions are released from the surface of the corresponding nanoclusters by treatment with acid and then were detected by square wave anodic stripping voltammetry. The currents at the peak potentials for Cd(II) and Pb(II) were used as the sensor signal for TC and CAP, respectively. This multiplex immunoassay enables the simultaneous determination of TC and CAP in a single run with dynamic ranges from 0.01 to 50 ng mL?1 for both analytes. The detection limits for TC and for CAP are 7.5 pg mL?1 and 5.4 pg mL?1, respectively. No obvious nonspecific adsorption and cross-reactivity was observed in a series of analyses. Intra-assay and inter-assay coefficients of variation were less than 10 %. The method was evaluated by analyzing TC and CAP in spiked samples of milk and honey. The recoveries range from 88 % to 107 % for TC, and from 91 % to 119 % for CAP.
Figure
We developed a new multiplexed electrochemical immunoassay for simultaneous determination of tetracycline and chloramphenicol, using metal sulfide nanoclusters as recognition elements.  相似文献   

20.
CdSe:Eu nanocrystals were successfully synthesized and characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectric spectroscopy. The CdSe:Eu nanocrystals showed enhanced green electrochemiluminescence (ECL) intensity when compared to pure CdSe nanocrystals. Further, the nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen (CEA) that has a linear response over the 1.0 fg·mL?1 to 100 ng·mL?1 CEA concentration range with a 0.4 fg·mL?1 detection limit. The assay was applied to the determination of CEA in human serum samples.
Graphical abstract Schematic of the assay: GCE-glassy-carbon electrode, Ab- Antibody, BSA- Bovine serum albumin, Ag- Antigen. CdSe:Eu nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号