首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photograft polymerization of various vinyl monomers onto nanosized silica surfaces was investigated. It was initiated by eosin moieties introduced onto the silica surface. The preparation of the silica with eosin moieties was achieved by the reaction of eosin with benzyl chloride groups on the silica surface.These were introduced by the reaction of surface silanol groups with 4‐(chloromethyl)phenyltrimethoxysilane in the presence of t‐butyl ammonium bromide as a phase‐transfer catalyst. The photopolymerization of various vinyl monomers, such as styrene, acrylamide, acrylic acid, and acrylonitrile was successfully initiated by eosin moieties on the silica surface in the presence of ascorbic acid as a reducing agent and by oxygen. The corresponding polymers were grafted from the silica surface. The grafting efficiency (percentage of grafted polymer to total polymer formed) in the photoinitiation system was much larger than that in the radical polymerization initiated by surface radicals; these radicals were formed by the thermal decomposition of azo groups introduced onto the silica surface. It was found that the polymer‐grafted silica gave stable dispersions in good solvents of grafted polymer and the wettability of the surfaces can be easily controlled by grafting of polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 600–606, 2005  相似文献   

2.
The effects of radicals on silica surface, which were formed by γ‐ray irradiation, on the polymerization of vinyl monomers were investigated. It was found that the polymerization of styrene was remarkably retarded in the presence of γ‐ray‐irradiated silica above 60 °C, at which thermal polymerization of styrene is readily initiated. During the polymerization, a part of polystyrene formed was grafted onto the silica surface but percentage of grafting was very small. On the other hand, no retardation of the polymerization of styrene was observed in the presence of γ‐ray‐irradiated silica below 50 °C; the polymerization tends to accelerate and polystyrene was grafted onto the silica surface. Poly(vinyl acetate) and poly(methyl methacrylate) (MMA) were also grafted onto the surface during the polymerization in the presence of γ‐ray‐irradiated silica. The grafting of polymers onto the silica surface was confirmed by thermal decomposition GC‐MS. It was considered that at lower temperature, the grafting based on the propagation of polystyrene from surface radical (“grafting from” mechanism) preferentially proceeded. On the contrary, at higher temperature, the coupling reaction of propagating polymer radicals with surface radicals (“grafting onto” mechanism) proceeded to give relatively higher molecular weight polymer‐grafted silica. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2972–2979, 2006  相似文献   

3.
The effective grafting of vinyl polymers onto an ultrafine silica surface was successfully achieved by the photopolymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface with Mn2(CO)10 under UV irradiation at 25 °C. The introduction of trichloroacetyl groups onto the surface of silica was achieved by the reaction of trichloroacetyl isocyanate with surface amino groups, which were introduced by the treatment of silica with 3‐aminopropyltriethoxysilane. During the polymerization, the corresponding polymers were effectively grafted onto the surface, based on the propagation of polymer from surface radicals formed by the interaction of trichloroacetyl groups and Mn2(CO)10. The percentage of poly(methyl methacrylate) grafting onto the silica reached 714.6% after 90 min. The grafting efficiency (proportion of grafted polymer to total polymer formed) in the polymerization of methyl methacrylate was very high, about 80%, indicating the depression of formation of ungrafted polymer. Polymer‐grafted silica gave a stable colloidal dispersion in good solvents for grafted polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2157–2163, 2001  相似文献   

4.
For the purpose of the prevention of the environmental pollution and the simplification of reaction process, the scale-up radical graft polymerization of vinyl monomers onto nano-sized silica surface initiated by azo groups and peroxycarbonate groups previously introduced onto the surface in the solvent-free dry-system was investigated. The introduction of azo groups onto the silica surface was achieved by the reaction of surface amino groups with 4,4′-azobis(4-cyanopentanoic acid chloride). On the other hand, the introduction of peroxycarbonate groups onto the silica surface was achieved by Michael addition of surface amino groups to t-butylperoxy-2-methacryloyloxyethylcarbonate. The graft polymerization of vinyl monomers onto the surface was successfully achieved by splaying monomers to nano-sized silica having azo and peroxycarbonate groups in solvent-free dry-system. It is interesting to note that the formation of ungrafted polymer was depressed in comparison with graft polymerization in solution: the grafting efficiency was 90-95%. In addition, in the solvent-free dry-system, the grafting of copolymer having pendant peroxycarbonate groups onto the nano-sized silica surface and the radical postgraft polymerization of styrene initiated by the pendant initiating groups of the grafted copolymer chain on the silica surface was investigated.  相似文献   

5.
The photografting of polymers onto ultrafine inorganic particles, such as silica and titanium oxide, initiated by azo groups introduced onto these surfaces was investigated. The introduction of azo groups onto the particles was achieved by the reaction of 4,4′-azobis(4-cyanopentanoic acid) with surface isocyanate groups, which were introduced by the treatment with tolylene 2,4-diisocyanate. It was found that the photopolymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and N-vinylcarbazole, is initiated by ultrafine particles having azo groups. The corresponding polymers were effectively grafted onto these surfaces through the propagation of the polymer from the surface radicals formed by the photodecomposition of the azo groups: e.g., the percentage of grafting of PMMA and polystyrene onto silica was reached to 112 and 176%, respectively. The percentage of grafting onto silica in the graft polymerization initiated by photodecomposition of surface azo groups was much larger than that initiated by thermal decomposition. Polymer-grafted ultrafine particles thus obtained gave a stable colloidal dispersion in good solvents for the grafted chain. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Abstract

The cationic graft polymerization of vinyl monomers onto a carbon whisker, vapor-grown carbon fiber, initiated by acylium perchlorate groups introduced onto the surface, was investigated. The introduction of acylium perchlorate groups onto a carbon whisker was achieved by the treatment of a carbon whisker having acyl chloride groups, which were introduced by the reaction of surface carboxyl groups with thionyl chloride, with silver perchlorate in nitrobenzene. It was found that the cationic polymerization of vinyl monomers, such as styrene, indene, N-vinyl-2-pyrrolidone, and n-butyl vinyl ether, is initiated by acylium perchlorate groups on a carbon whisker. In the polymerization, the corresponding vinyl polymers were grafted onto a carbon-whisker surface based on the propagation of polymer from the surface: the percentage of grafting of polystyrene and polyindene reached 42.5 and 100.3%, respectively. The percentage of polystyrene grafting decreased with increasing polymerization temperature because of preferential chain transfer reactions at higher temperatures. Polymer-grafted carbon whisker gave a stable colloidal dispersion in a good solvent for grafted polymer.  相似文献   

7.
The effect of polymerization conditions on the molecular weight of polystyrene grafted onto silica obtained from the radical graft polymerization initiated by azo and peroxyester groups introduced onto the surface was investigated. The molecular weight of polystyrene grafted onto silica obtained from the radical graft polymerization initiated by surface azo and peroxyester groups decreased with decreasing monomer concentration and polymerization temperature. The molecular weight of polystyrene was found to be controlled to some extent by the addition of a chain transfer agent. The molecular weight of grafted chain on silica surface obtained from the graft polymerization initiated by surface radicals formed by photodecomposition of azo groups was considerably smaller than that by thermal decomposition. The number of grafted polystyrene in photopolymeriztion, however, was much larger than that in thermal polymerization. These results are explained by the blocking of surface radicals formed on the silica surface by previously grafted polymer chain: when the decomposition of surface azo and peroxyester groups proceed instantaneously at the initial stage of the polymerization, the number of grafted polymer chains increased.  相似文献   

8.
To graft polymers with controlled molecular weight and narrow molecular weight distribution, the grafting of polymers onto ultrafine silica surface by the termination of living polymer cation with amino groups introduced onto the surface was investigated. The introduction of amino or N-phenylamino groups onto the silica surface was achieved by the treatment of silica with γ-aminopropyltriethxysilane or N-phenyl-γ-aminopropyltrimethoxysilane. It was found that these amino groups on silica are readily reacted with living poly(isobutyl vinyl ether) (polyIBVE), which was generated with CF3COOH/ZnCl2 initiating system, and polyIBVE with controlled molecular weight and narrow molecular weight distribution is grafted onto the surface. By the termination of living poly(2-methyl-2-oxazoline), which was generated with methyl p-toluenesulfonate initiator, with amino groups on silica, polyMeOZO was also grafted onto the surface. The percentage of grafting of polymer onto the silica surface decreased with increasing molecular weight of the living polymer, because the steric hindrance of silica surface increases with increasing molecular weight of living polymer. Polymer-grafted silica gave a stable dispersion in a good solvent for grafted chains. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Abstract

Comb‐like polystyrene grafted silica nanoparticles (c‐PS‐SNs) were prepared by the following steps: (a) methacryloxypropyl silica nanoparticles (MPSNs) were used as macromonomer and free radical copolymerized with 4‐vinyl benzyl chloride (VBC) by a solution polymerization method; (b) the product of (A), poly(4‐vinyl benzyl chloride) grafted silica nanoparticle (PVBC‐SN) was separated and then used as a macroinitiator for the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of styrene catalyzed by the complex of Cu(I)Br and 2,2′‐bipyridyl (bipy) in toluene solutions. The structurally well‐defined polymer chains were grown from the nanoparticle surfaces to yield particles composed of a silica core and a well defined, densely grafted outer comb‐like PS layer. A percentage of grafting (PG%) (the weight ratio of the PS grafted with that of the silica charged) of more than 80% was achieved after a polymerizing time of 5?hr.  相似文献   

10.
Repeatedly grafted copolymers (pemosors) were obtained by grafting one and the same or different vinyl monomers onto heterochain polymers in a radical reaction. As starting polymers films of polyethylene terephthalate and poly-ε-caproamide were used. Styrene and methyl methacrylate were the grafted vinyl monomers. It has been shown that pemosors could be formed in yields of 500–1000% (of the starting sample weight) by multiple grafting on vinyl polymer. Pemosors differ in appearance both from the starting polymers and the single-graft copolymers. Investigations of pemosor samples by electron microscope showed that the morphological structure of the surface was appreciably affected, the changes being more significant with increasing content of the grafted polymer. X-Ray studies and NMR data on pemosors showed that multiple grafting of vinyl monomers does not change the crystal structure of the starting polymers, affecting only the supermolecular structure of the outer layer. Pemosors are polymers of a new type, differing in their properties from the starting polymers and the single-graft copolymers. The grafting character and penetration depth of the grafted monomer depend on the packing compactness of the supermolecular structure of the polymeric base as well as on the chemical nature of the starting polymers and monomers. Pemosors possess considerable chemical resistance and withstand prolonged boiling in 40% alkali solution.  相似文献   

11.
The radical graft polymerization of vinyl monomers from carbon black initiated by azo groups introduced onto the surface was investigated. The introduction of azo groups onto carbon black surface was achieved by three methods: the reaction of 2,2′-azobis[2-(2-imidazolin-2-yl)propane] (AIP) with (1) epoxide groups, which were introduced by the reaction of carbon black with chlorometh-yloxirane; (2) acyl chloride groups, which were introduced by the reaction of carboxyl groups on the surface with thionyl chloride; and (3) 3-chloroformyl-1-cyano-1-methylpropyl groups, which were introduced by the reaction of carbon black with 4,4′-azobis(4-cyanovaleric acid) and then thionyl chloride. The amount of azo groups introduced onto the surface by the above methods was determined to be 0.07-0.19 mmol/g. The graft polymerization of methyl methacrylate was found to be initiated by azo groups introduced onto the carbon black surface. During the polymerization, poly(methyl methacrylate) was effectively grafted onto carbon black through propagation of the polymer from the radical produced on the surface by the decomposition of the azo groups. The percentage of grafting using carbon black having azo groups introduced by method 1 increased to 40%. It was also found that the graft polymerization of several vinyl monomers such as styrene, acrylonitrile, and acrylic acid was initiated by the azo groups introduced onto the surface and the corresponding polymer was effectively grafted onto the surface. Furthermore, the effect of the amount of carbon black having azo groups on the graft polymerization was investigated.  相似文献   

12.
Abstract

Postpolymerization of vinyl monomers initiated by pendant peroxycarbonate groups of grafted polymer chains on carbon black (CB) was investigated. The grafting of polymers having pendant peroxycarbonate groups onto CB was achieved by the trapping of polymer radicals formed by the thermal decomposition of copolymers of t-butylperoxy-2-methacryloyloxyethyl-carbonate (HEPO) with vinyl monomers such as vinyl acetate (VAc), styrene (St) and methyl methacrylate (MMA). The copolymers having pendant peroxycarbonate groups were prepared by copolym-erization of HEPO with vinyl monomers using azo initiator under irradiation of UV light at room temperature. The amount of remaining pendant peroxycarbonate groups of the poly(VAc-co-HEPO)-grafted CB obtained from the reaction at 90°C was maximum and decreased above the temperature. Furthermore, the postpolymerization of vinyl monomers, such as St, MMA, and VAc was initiated in the presence of poly(VAc-co-HEPO)-grafted and poly(St-co-HEPO)-grafted CB and the corresponding polymers were postgrafted onto CB to give branched polymer-grafted CB. The percentage of poly(St)-postgrafting (proportion of post-grafted poly(St) to poly(MMA-co-HEPO)-grafted CB used) increased with increasing polymerization time, but became constant at 20% after 4 hours.  相似文献   

13.
Graft polymerization of vinyl monomers onto nanosized alumina particles   总被引:1,自引:0,他引:1  
To enhance the interfacial interaction in alumina nanoparticles filled polymer composites, an effective surface modification method was developed by grafting polystyrene and polyacrylamide onto the particles. That is, the alumina surface was firstly treated with silane, followed by radical grafting polymerization in aqueous or non-aqueous systems. Results of infrared spectroscopy and dispersiveness in solvents demonstrated that the desired polymer chains have been covalently bonded to the surface of the alumina particles. They also greatly changed their surface characteristics. In addition, effects of polymerization conditions, including ways of monomer feeding, concentrations of monomer and initiator, and reaction time, on the grafting reaction were presented. It was found that the growing polymer radicals and/or the grafted polymer chains had a blocking effect on the diffusion of radicals or monomers towards the surface of nanoalumina. This was due to the fact that the interaction between the solvent and the grafted polymers was weaker than that between the grafted polymers and the nanoparticles.  相似文献   

14.
This paper describes the radical graft polymerization of vinyl monomers from glass fiber surface initiated by alkylazo groups introduced onto the fiber surface. The introduction of azo groups onto the glass fiber surface was achieved by reaction of isocyanate groups which were previously attached onto the surface with two kinds of azo initiators, 4,4′-azobis(4-cyanopentanoic acid) (ACPA) and 2,2′-azobis(2-cyanopropanol) (ACP). The amounts of surface azo groups introduced by ACPA and ACP were both determined to be 1.3 × 10−5 mol g−1 by nitrogen analysis. The radical graft polymerization of methyl methacrylate (MMA) was found to be initiated in the presence of the glass fiber having surface azo groups. During the polymerization, part of resultant poly(MMA) grafted onto the fiber surface through propagation of the polymer from the surface radicals produced by the decomposition of the azo groups. The percentage of grafting of poly(MMA) reached 48.1% after 24 h. The graft polymerizations of other monomers, such as styrene, N-vinylcarbazole, and acrylic acid, were also initiated by the surface azo groups, and the corresponding polymer effectively grafted onto the surface. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2121–2128, 1999  相似文献   

15.
The surface grafting onto ultrafine silica by the radical polymerization of methyl methacrylate (MMA) initiated by peroxide groups introduced onto the surface was investigated. The introduction of peroxide groups onto the silica surface was achieved by the reaction of hydrogen peroxide with chlorosilyl groups, which were introduced by the treatment of silica with thionyl chloride. The content of diisopropylbenzene peroxide and tert-butyl peroxide groups introduced onto the silica according to the above method was determined to be 0.11 and 0.08 mmol/g, respectively. It was found that the polymerization of MMA is initiated by silica having these peroxide groups. In the polymerization, polyMMA was grafted onto silica surface: the percentage of grafting reached about 70%. Therefore, it was concluded that the polymerization of MMA is initiated by surface radicals formed by the decomposition of peroxide groups on silica and polyMMA is grafted through the propagation from the surface. During the polymerization, ungrafted polyMMA was also formed because of the formation of initiator fragments by the decomposition of peroxide groups: the grafting efficiency of the graft polymerization was 30–40%. PolyMMA-grafted silica produced a stable colloidal dispersion in organic solvents for polyMMA. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
The introduction of peroxide groups onto carbon black surface was achieved through the trapping of the peroxide radicals formed by the decomposition of polymeric peroxide, such as poly(tetraethylene glycol peroxyadipate) (ATPPO), and bis-peroxide, such as 1,1′-bis (t-butyldioxy)cyclohexane (Perhexa-C), by the surface: the amount of peroxide groups introduced onto carbon black surface by the treatment with ATPPO and Perhexa-C were determined to be 0.07 mmol/g and 0.12 mmol/g, respectively. The polymerization of vinyl monomers with positive e-value, such as methyl methacrylate and 2-hydroxyethy methacrylate, was successfully initiated by the peroxide groups introduced onto carbon black surface. During the polymerization, the corresponding polymers were effectively grafted onto the surface as a result of the propagation of polymer from the surface radicals formed by decomposition of the peroxide groups. The polymerization of vinyl monomers with negative e-value, such as styrene and vinyl acetate, however, was scarcely initiated by the peroxide groups on carbon black. This may be due to the fact that surface active radicals, which were formed by the hydrogen abstraction from carbon black by fragment radicals, inhibit the polymerization of vinyl monomers with negative e-value. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
An account of the experiments on preparing polystyrene(PS) nanocomposites through grafting the polymer onto organophilic montmorillonite is reported.Cloisite 20A was reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl moiety.Because the reaction may liberate HC1,it was performed in the presence of sodium hydrogencarbonate to prevent the exchange of quaternary alkylammonium cations with H~+ ions.Only the silanol groups on the edge of the clay react with vinyltrichlorosilane.The radical polymerization of the product with styrene as a vinyl monomer leads to chemical grafting of PS onto the montmorillonite surface.The homopolymer formed during polymerization was separated from the grafted organoclay by Soxhlet extraction.Chemical grafting of the polymer onto Cloisite 20A was confirmed by infrared spectroscopy.The prepared nanocomposite materials and the grafted nano-particles were studied by XRD.Exfoliated nanocomposites may be obtained for 0.5 wt%-l wt%clay content.The nanocomposites were studied by thermogravimertic analysis(TGA) dynamic thermal analysis(DTA) and dynamic mechanical analysis (DMTA).  相似文献   

18.
The radical graft polymerization of vinyl monomers onto carbon black initiated by a redox system consisting of ceric ion and carbon black having alcoholic hydroxyl groups was investigated. The introduction of alcoholic hydroxyl groups onto the carbon black surface was achieved by the reaction of carbon black with alcoholic hydroxyl radicals, formed by the reaction of alcohol with benzoyl peroxide. The rate of the polymerization of acrylamide (AAm) initiated by the redox system was found to increase in the following order of hydroxyl groups: 1-hydroxyoctyl < 1-hydroxypropyl < 1-hydroxyethyl < hydroxymethyl < 1-hydroxy-1-methylethyl. In the redox polymerization, poly-AAm was effectively grafted onto carbon black by propagation of the polymer from the radical formed by the reaction of ceric ions with the alcoholic hydroxy groups. The percentage of grafting increased with increasing conversion. By use of this redox system, poly(acrylic acid), polyacrylonitrile, and poly(N-vinyl-2-pyrrolidone) could be grafted onto carbon black, but poly(methyl methacrylate) and polystyrene could not be so grafted. The graft polymerization of AAm by use of a redox system consisting of ceric ion and PVA-grafted carbon black was also investigated.  相似文献   

19.
This paper is an account of the experiments on grafting polyacrylamide onto organophilic montmorillonite. Cloisite 20A was reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl moiety. Since the reaction liberates HCl, it was performed in the presence of sodium hydrogencarbonate to prevent the exchange of quaternary alkyl ammonium cations with H+ ions. Only the silanol groups on the edge of the clay react with vinyltrichlorosilane. The product maintained the same basal spacing as the precursor. The radical polymerization of the product with acrylamide as a vinyl monomer leads to chemical grafting of polyacrylamide onto montmorillonite surface. The homopolymer formed during polymerization was Soxhelt extracted from the grafted organoclay. Chemical grafting of the polymer onto Cloisite 20A was confirmed by IR spectroscopy. The interlayer and surface changes of the clay in the prepared nanocomposite materials and the grafted nano-particles were studied by XRD and SEM. Intercalated nanocomposites were obtained for clay contents of 3-7% and agglomeration occurred at higher clay loadings. The nanocomposites were studied by thermogravimertic analysis (TGA) and dynamic mechanical analysis (DMTA).  相似文献   

20.
The radical graft polymerization of vinyl monomers, such as styrene and methyl methacrylate, initiated by azo groups introduced onto silica nanoparticle and carbon black surfaces in room temperature ionic liquid (IL) were investigated. In this work, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([C4mim][PF6]) was used as IL. The percentage of polystyrene and poly(methyl methacrylate) grafting onto silica nanoparticle and carbon black increased with increasing reaction time. The percentage of grafting in IL was much larger than that in 1,4‐dioxane. The molecular weight of polystyrene grafted onto the silica surface in IL was almost equal to that in 1,4‐dioxane. The result indicates that the amount of grafted polystyrene in IL is five times that in 1,4‐dioxane. This may be due to the fact that lifetime of the surface radical formed by the group of azo is prolonged because of high viscosity of IL. Therefore, the surface azo groups were effectively used as initiating sites for the graft polymerization. In addition, the reduction of waste solvent was achieved by use of IL as reaction solvent, because unreacted monomer could be removed under vacuum after the reaction and the reuse of IL was easily achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1143–1149, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号