首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The density, dynamic viscosity, and refractive index of the ternary system (ethanol + water + 1,3-dimethylimidazolium methylsulphate) at T = 298.15 K and of its binary systems 1,3-dimethylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, and 328.15) K and at 0.1 MPa have been measured over the whole composition range. From these physical properties, excess molar volumes, viscosity deviations, refractive index deviations, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. For the ternary system, the excess properties were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models.  相似文献   

2.
Experimental isothermal (vapour + liquid) equilibrium (VLE) data are reported for the binary mixture containing 1-butyl-3-methylimidazolium iodide ([bmim]I) + 1-butanol at three temperatures: (353.15, 363.15, and 373.15) K, in the range of 0 to 0.22 liquid mole fraction of [bmim]I. Additionally, refractive index measurements have been performed at three temperatures: (293.15, 298.15 and 308.15) K in the whole composition range. Densities, excess molar volumes, surface tensions and surface tension deviations of the binary mixture were predicted by Lorenz–Lorentz (nD-ρ) mixing rule. Dielectric permittivities and their deviations were evaluated by known equations. (Vapour + liquid) equilibrium data were correlated with Wilson thermodynamic model while refractive index data with the 3-parameters Redlich–Kister equation by means of maximum likelihood method. For the VLE data, the real vapour phase behaviour by virial equation of state was considered. The studied mixture presents S-shaped abatement from the ideality. Refractive index deviations, surface tension deviations and dielectric permittivity deviations are positive, while excess molar volumes are negative at all temperatures and on whole composition range. The VLE data may be used in separation processes design, and the thermophysical properties as key parameters in specific applications.  相似文献   

3.
Densities and viscosities of 1-butyl-3-methylimidazolium nitrate [Bmim][NO3], and its binaries with alcohol (ethanol, 1-propanol, or 1-butanol) were measured at different temperatures. The densities and viscosities of pure ionic liquid were correlated successfully by empirical equations. The Vogel–Fulcher–Tammann equations can fit the experimental data of viscosities for pure IL. Excess molar volume and viscosity deviations were calculated for the binaries. The excess molar volumes have negative deviations from the ideal solution.  相似文献   

4.
In the present work, density and viscosity of two binary mixtures of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) with 1-butyl-3-methylimidazolium acetate ([bmim][acetate]) are measured. The experiments were carried out at atmospheric pressure and at T = (293.15 to 343.15) K for density and from 293.15 K to 353.15 K for viscosity over the whole range of mole fraction. Using the density and viscosity results, several physical and thermodynamic properties such as excess molar volumes (VE), coefficients of thermal expansions (α), viscosity deviation (Δη),molar activation entropy (ΔS), molar activation enthalpy (ΔH) and molar activation Gibbs free energy (ΔG) for these binary mixtures are calculated.The experimental results of the density and viscosity for the pure systems as well as the binary systems show a decrease with increasing temperature as expected. The results of density measurements show that over all ranges of temperatures investigated the density of the pure components show the following trend: DEA > [bmim][acetate] > MDEA. Therefore, in the binary mixtures of the (MDEA + [bmim][acetate]), the density of the mixture reduces with decreasing concentration of the ionic liquid and for the (DEA + [bmim][acetate]) mixture the density of the blend enhances to reduce the concentration of the ionic liquid. Moreover, the calculated excess molar volumes show a positive deviation from ideality for the two binary mixtures. The behaviour of change of viscosity against concentration for the (MDEA + [bmim][acetate]) system is different from the (DEA + [bmim][acetate]) mixture so that for the first system the value of the viscosity rises with increasing [bmim][acetate] mole fraction, but in the second system there is a minimum viscosity point in the DEA-rich region.  相似文献   

5.
Heat capacity for 1-butyl-3-methylimidazolium nitrate [C4mim][NO3] in the temperature range (5–370) K has been measured by adiabatic calorimetry. Temperatures and enthalpies of its phase transitions have been determined. Thermodynamic functions have been calculated for the crystalline and the liquid states. Phase transition temperatures for set of nitrate salts have been compared. Enthalpy of combustion and enthalpy of formation for crystalline [C4mim][NO3] have been determined using a static-bomb isoperibol combustion calorimeter. A correlation scheme for the estimation of Cp of ionic liquids has been developed.  相似文献   

6.
In this work densities, refractive indices, speeds of sound and isentropic compressibilities of the ternary mixture ethanol+water+1-butyl-3-methylimidazolium chloride ([C4mim][Cl]), and of the binary subsystems containing the ionic liquid, have been measured at 298.15 K and atmospheric pressure.  相似文献   

7.
Densities and viscosities were determined for binary mixtures of 2,2,2-trifluoroethanol (TFE) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) or 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][NTf2]) over the entire range of composition. The experimental measurements were carried out at temperatures ranging from 278.15 K to 333.15 K, at atmospheric pressure. The densities and viscosities of the pure ionic liquids and their mixtures with TFE were described successfully by an empirical third-order polynomial and by the Vogel–Fulcher–Tammann equation, respectively. In addition, excess molar volumes and viscosity deviations were determined from densities and viscosities of mixtures, respectively, and fitted by using the Redlich–Kister equation.  相似文献   

8.
(Liquid + liquid) equilibrium (LLE) data of (water + ethanol + dimethyl glutarate) have been determined experimentally at T=(298.15,308.15 and 318.15) K. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The LLE data of the ternary mixture were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

9.
Density (ρ), refractive index (nD) and speed of sound (u) values are measured for the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate and N-octyl-2-pyrrolidone over the entire range of mole fraction at temperatures from T = (298.15 to 323.15) K under atmospheric pressure. Using the basic experimental data, various acoustic and excess thermodynamic parameters are calculated and are discussed in terms of molecular interactions between the present investigated binary system. The excess values are fitted to Redlich–Kister polynomial equation to estimate the binary coefficients and standard deviation between the experimental and calculated values. Further, the molecular interactions in the binary mixture system are analysed using the experimental FT-IR spectrum recorded at room temperature.  相似文献   

10.
The vapor pressures of (ethanol + glycerol) and (water + glycerol) binary mixtures were measured by means of two static devices at temperatures between (273 and 353 (or 363)) K. The data were correlated with the Antoine equation. From these data, excess Gibbs free energy functions (GE) were calculated for several constant temperatures and fitted to a fourth-order Redlich–Kister equation using the Barker method. The (ethanol + glycerol) binary system exhibits positive deviations in GE where for the (water + glycerol) mixture, the GE is negative for all temperatures investigated over the whole composition. Additionally, the NRTL, UNIQUAC and Modified UNIFAC (Do) models have been used for the correlation or prediction of the total pressure.  相似文献   

11.
Densities and viscosities were measured for pure ionic liquid [C6mim][Br] (1-hexyl-3-methylimidazolium bromide) and the binary system (water + [C6mim][Br]) at 0.1 MPa and in the (293.15 to 333.15) K range. The excess molar volume and viscosity deviation were calculated and correlated by Redlich–Kister polynomial expansions. The fitting parameters and the standard deviations were determined.  相似文献   

12.
Experimental densities, electrical conductivities and dynamic viscosities of the pure 1-butyl-1-methylpyrrolydinium dicyanamide ionic liquid, [bmpyrr][DCA], and its binary liquid mixtures with γ-butyrolactone (GBL) were measured at temperatures from (273.15 to 323.15) K and at pressure of 0.1 MPa over the whole composition range. From the experimental density data the related excess molar volumes were calculated and fitted using Redlich–Kister’s polynomial equation. Obtained values are negative in the whole range of ionic liquid mole fraction and at all temperatures. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes and partial molar volumes at infinite dilution were also calculated, in order to obtain information about the interactions between GBL and the selected ionic liquid. Negative values of these properties for both components indicate stronger interactions between GBL and IL compared to the pure components and better packing due to the differences in size and shape of the studied molecules. From the viscosity results, the Angell strength parameter was calculated and found to be 5.47 indicating that [bmpyrr][DCA] is a “fragile” liquid. All the results are compared with those obtained for binary mixtures of 1-butyl-1-methylpyrrolydinium bis(trifluoromethylsulfonyl)imide, [bmpyrr][NTf2], with GBL.  相似文献   

13.
This work is a continuation of our studies on experimental measurements of physical properties on binary mixtures of the ionic liquid (IL) family 1-alkyl-3-methyl imidazolium tetrafluoroborate (CnMIM-BF4) with water and ethanol. Here, we present density for the ternary system Butyl-MIM-BF4 + ethanol + water at two temperatures (298.15 K and 323.15 K) and seven pressures (from 0.1 to 30 MPa). It should be noted that BMIM-BF4 is the only IL of the family CnMIM-BF4 that can be mixed with water and ethanol in all range of concentrations at room conditions. From the density data measured in function of pressure and temperature other important derived thermodynamic properties can be calculated, such us excess molar volumes, isothermal compressibility, isobaric expansion and the thermal pressure coefficients. These properties for selected ternary mixtures will be discussed and compared with data from the scarce number of published results for similar ternary mixtures with this same IL.  相似文献   

14.
The density and surface tension of 1-ethyl-3-methylimidazolium methylsulphate, [EMIM][CH3SO4] ionic liquid have been measured from (283.15 to 333.15) K. The coefficient of thermal expansion was calculated from the experimental density results using an empirical correlation for T = (283.15-338.15) K. Molecular volume and standard entropies of [EMIM][CH3SO4] ionic liquid were obtained from the experimental density values. The surface properties, critical temperature and enthalpy of vaporization were also discussed. Density and surface tension have been measured over the whole composition range for [EMIM][CH3SO4] with alcohols (methanol, ethanol, 1-butanol) binary systems at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich-Kister equation to determine the fitting parameters and the root mean square deviations.  相似文献   

15.
Densities, speeds of sound, viscosities and refractive indices of two binary systems 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] + methanol and 1-ethyl-3-methylimidazolium tetrafluoroborate [emim][BF4] + methanol, as well as of all pure components, have been measured covering the whole range of compositions at T = (278.15 to 318.15) K and p = 101 kPa. From this data, excess molar volumes, excess isentropic compressibilities, viscosity deviations and refractive index deviations were calculated and fitted to extended versions of the Redlich–Kister equation. Estimated coefficients of these equations taking into account the dependence on composition and temperature simultaneously were also presented.  相似文献   

16.
X-ray diffraction measurements for the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], mixed with CO2 were carried out at high pressures using our developed polymer cell. The intermolecular distribution functions obtained for [BMIM][BF4]–CO2 mixtures showed that CO2 molecules are preferentially solvated to the [BF4] anion. The similar preferential solvation was previously observed in analogous 1-btuyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], with a different anion, which is in harmony with the present results in [BMIM][BF4]–CO2.  相似文献   

17.
(Liquid–liquid) equilibrium (LLE) data are investigated for mixtures of (water + propionic acid + oleyl alcohol) at 298.15, 308.15 and 318.15 K and atmospheric pressure. The solubility curves and the tie-line end compositions of liquid phases at equilibrium were determined, and the tie-line results were compared with the data predicted by the UNIFAC method. The phase diagrams for the ternary mixtures including both the experimental and correlated tie-lines are presented. The distribution coefficients and the selectivity factors for the immiscibility region are calculated to evaluate the effect of temperature change. The reliability of the experimental tie-lines was confirmed by using Othmer–Tobias correlation. It is concluded that oleyl alcohol may serve as an adequate solvent to extract propionic acid from its dilute aqueous solutions. The UNIFAC model correlates the LLE data for 298.15, 308.15 and 318.15 K with a root mean square deviation of 5.89, 6.46, and 6.69%, respectively, between the observed and calculated mole concentrations.  相似文献   

18.
I. Bou Malham 《Talanta》2007,72(1):155-164
The autoprotolysis constants (Ks) of water - 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) mixtures were determined at 298 K over the composition range of 0 to 77.43 vol.% bmimBF4 using potentiometric method with a glass electrode. A slight increase in the autoprotolysis constant was observed when the salt was added to the water. The value of the ionic product of the medium then decreases as the bmimBF4 content increases from about 20 vol.%. The acid-base properties of these media were perfectly described by Bahe's approaches that were completed by Varela et al. concerning structured electrolyte solutions with large short-range interactions.  相似文献   

19.
The phase behavior of carbon dioxide (CO2) and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) was measured and correlated at high pressures up to ∼40 MPa and at temperatures between 353.15 K and 373.15 K. The solubility data of CO2 in [bmim][Cl] were obtained by observing the bubble point pressure at specific temperatures. A variable-volume view cell, which is a high-pressure equilibrium apparatus, was used to measure the CO2 + [bmim][Cl] system solubility under varying pressure and temperature conditions. In addition, liquid–liquid–vapor (LLV) three-phase behavior was investigated using the equilibrium cell to be able to determine the classification of phase-behavior type by Scott and Van Konynenburg. Based on the LLV phase behavior, this system most likely has type III phase-behavior which is common for IL + CO2 systems. The resulting data showed that CO2 dissolved well in the IL at low CO2 concentrations, but that the pressure derivative of CO2 solubility dramatically decreased as the mole fraction of CO2 was increased. The experimental data were well fitted by the Peng–Robinson equation of state with a quadratic mixing rule and cubic parameters estimated by the Joback method.  相似文献   

20.
The viscosities of the mixtures 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) + CO2 and 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF6]) + CO2 were measured with a rolling ball viscometer. The CO2 mole fraction for one mixture ranged up to 0.434 and the other up to 0.447. The viscosities were measured at 293.15-353.15 K and 10-20.0 MPa. The experimental uncertainty in viscosity was estimated to be within ±3.0%. The experimental data were compared with McAllister's three-body model, which correlated with the experimental data within average absolute deviations of 5.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号