首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations were conducted to examine single-asperity friction as a function of load, surface orientation, and sliding direction on individual crystalline grains of diamond in the wearless regime. Experimental and simulation conditions were designed to correspond as closely as state-of-the-art techniques allow. Both hydrogen-terminated diamond (111)(1 x 1)-H and the dimer row-reconstructed diamond (001)(2 x 1)-H surfaces were examined. The MD simulations used H-terminated diamond tips with both flat- and curved-end geometries, and the AFM experiments used two spherical, hydrogenated amorphous carbon tips. The AFM measurements showed higher adhesion and friction forces for (001) vs (111) surfaces. However, the increased friction forces can be entirely attributed to increased contact area induced by higher adhesion. Thus, no difference in the intrinsic resistance to friction (i.e., in the interfacial shear strength) is observed. Similarly, the MD results show no significant difference in friction between the two diamond surfaces, except for the specific case of sliding at high pressures along the dimer row direction on the (001) surface. The origin of this effect is discussed. The experimentally observed dependence of friction on load fits closely with the continuum Maugis-Dugdale model for contact area, consistent with the occurrence of single-asperity interfacial friction (friction proportional to contact area with a constant shear strength). In contrast, the simulations showed a nearly linear dependence of the friction on load. This difference may arise from the limits of applicability of continuum mechanics at small scales, because the contact areas in the MD simulations are significantly smaller than the AFM experiments. Regardless of scale, both the AFM and MD results show that nanoscale tribological behavior deviates dramatically from the established macroscopic behavior of diamond, which is highly dependent on orientation.  相似文献   

2.
In the context of carbon geo-sequestration projects, brine-CO(2) interfacial tension γ and brine-CO(2)-rock surface water contact angles θ directly impact structural and residual trapping capacities. While γ is fairly well understood there is still large uncertainty associated with θ. We present here an investigation of γ and θ using a molecular approach based on molecular dynamics computer simulations. We consider a system consisting of CO(2)/water/NaCl and an α-quartz surface, covering a brine salinity range between 0 and 4molal. The simulation models accurately reproduce the dependence of γ on pressure below the CO(2) saturation pressure at 300K, and over predict γ by ~20% at higher pressures. In addition, in agreement with experimental observations, the simulations predict that γ increases slightly with temperature or salinity. We also demonstrate that for non-hydroxylated quartz surfaces, θ strongly increases with pressure at subcritical and supercritical conditions. An increase in temperature significantly reduces the contact angle, especially at low-intermediate pressures (1-10MPa), this effect is mitigated at higher pressures, 20MPa. We also found that θ only weakly depends on salinity for the systems investigated in this work.  相似文献   

3.
We present a neutron reflectivity study on interfaces in contact with flowing hexadecane, which is known to exhibit surface slip on functionalized solid surfaces. The single crystalline silicon substrates were either chemically cleaned Si(100) or Si(100) coated by octadecyl-trichlorosilane (OTS), which resulted in different interfacial energies. The liquid was sheared in situ and changes in reflectivity profiles were compared to the static case. For the OTS surface, the temperature dependence was also recorded. For both types of interfaces, density depletion of the liquid at the interface was observed. In the case of the bare Si substrate, shear load altered the structure of the depletion layer, whereas for the OTS covered surface no effect of shear was observed. Possible links between the depletion layer and surface slip are discussed. The results show that, in contrast to water, for hexadecane the enhancement of the depletion layer with temperature and interfacial energy reduces the amount of slip. Thus a density depletion cannot be the origin of surface slip in this system.  相似文献   

4.
The solid particles are adsorbed at interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the microstructure on the particle surface affects their adsorption properties. The physical properties of the interface adsorbing a particle will be described by taking into account the surface roughness due to the microstructure. The microstructure on the surface changes drastically the wettability and the equilibrium position of the adsorbed particle. Therefore, the contact angle of the particle at the three-phase contact line shifts with the particle surface area, because the surface roughness enhances the interfacial properties of the particle surface. Moreover, the range of the interfacial tensions at which the particle is adsorbed becomes narrower with the increase of the surface roughness. The effect of the particle shape on the adsorption properties is also studied. In the case of disk-shaped particles, the energy changes discontinuously when the plane surface of the particle contacts the liquid-liquid interface. The adsorbing position does not change with the surface roughness. The orientation of a parallelepiped particle at the liquid-liquid interface is governed by the aspect ratio and the surface area of the particle. On the other hand, the particle which is partially covered with the microstructured surface is adsorbed firmly at the interface in an oriented state. We should consider not only the interfacial tensions but also the surface structure and the particle shape to control the adsorption behavior of the particle.  相似文献   

5.
Polyimides are widely used as chip passivation layers and organic substrates in microelectronic packaging. Plasma treatment has been used to enhance the interfacial properties of polyimides, but its molecularmechanism is not clear. In this research, the effects of polyimide surface plasma treatment on the molecular structures at corresponding polyimide/air and buried polyimide/epoxy interfaces were investigated in situ using sum frequency generation (SFG) vibrational spectroscopy. SFG results show that the polyimide backbone molecular structure was different at polyimide/air and polyimide/epoxy interfaces before and after plasma treatment. The different molecular structures at each interface indicate that structural reordering of the polyimide backbone occurred as a result of plasma treatment and contact with the epoxy adhesive. Furthermore, quantitative orientation analysis indicated that plasma treatment of polyimide surfaces altered the twist angle of the polyimide backbone at corresponding buried polyimide/epoxy interfaces. These SFG results indicate that plasma treatment of polymer surfaces can alter the molecular structure at corresponding polymer/air and buried polymer interfaces.  相似文献   

6.
Strong adhesion of hydrogels on solids plays an important role in stable working for various practical applications. However, current hydrogel adhesion suffers from poor interfacial bonding with solid surfaces. Here, we propose a general superwetting-assisted interfacial polymerization (SAIP) strategy to robustly anchor hydrogels onto solids by forming high-density interfacial covalent bonds. The key of our strategy is to make the initiator fully contact solid surfaces via a superwetting way for enhancing the interfacial grafting efficiency. The designed anchored hydrogels show strong bulk failure with a high breaking strength of ≈1.37 MPa, different from weak interfacial failure that occurs in traditional strategies. The strong interfacial adhesion greatly enhances the stability of hydrogels against swelling destruction. This work opens up new inspirations for designing strongly anchored hydrogels from an interfacial chemistry perspective.  相似文献   

7.
Recent studies have shown that semiconductor surfaces such as silicon and diamond can be functionalized with organic monolayers, and that these monolayer films can be used to tether biomolecules such as DNA to the surfaces. Electrical measurements of these interfaces show a change in response to DNA hybridization and other biological binding processes, but the fundamental nature of the electrical signal transduction has remained unclear. We have explored the electrical impedance of polycrystalline and single-crystal diamond surfaces modified with an organic monolayer produced by photochemical reaction of diamond with 1-dodecene. Our results show that, by measuring the impedance as a function of frequency and potential, it is possible to dissect the complex interfacial structure into frequency ranges where the total impedance is controlled by the molecular monolayer, by the diamond space-charge region, and by the electrolyte. The results have implications for understanding the ability to use molecularly modified semiconductor surfaces for applications such as chemical and biological sensing.  相似文献   

8.
Diamond composites were prepared by sintering diamond grains with low melting Na2O–B2O3–SiO2 vitrified bonds in air. The influence of ZnO on the wettability and flowing ability of Na2O–B2O3–SiO2 vitrified bonds was characterized by wetting angle, the interfacial bonding states between diamond grains and the vitrified bonds were observed by scanning electron microscope (SEM), and the micro-scale bonding mechanism in the interfaces was investigated by means of energy-dispersive spectrometer (EDS), Fourier transform infrared (FTIR) spectrometer and X-ray photoelectron spectroscopy (XPS). The experimental results showed that ZnO facilitated the dissociation of boron/silicon–oxygen polyhedra and the formation of larger amount of non-bridging oxygen in the glass network, which resulted in the increase of the vitrified bonds' wettability and the formation of –CO, –O–H and –C–H bonds on the surface of diamond grains. B and Si diffused from the vitrified bonds to the interface, and C–C, C–O, CO and C–B bond formed on the surface of sintered diamond grains during sintering process, by which the interfacial bonding between diamond grains and the vitrified bonds was strengthened.  相似文献   

9.
We measured the interfacial tension and the density of air/n-hexane, n-decane, 1-perfluorohexane/1-hexyl-3-methyl-imidazolium hexafluorophosphate systems as a function of temperature. From the air/ionic liquid surface tension values, it was suggested that Coulombic interaction between imidazolium cations and counter anions are not so much different between the surface and bulk. The density values indicated that the decrease of surface tension by saturating organics was closely correlated to the mutual solubility between ionic liquid and organics. Interfacial tension at the oil/ionic liquid interfaces suggested that ionic liquid molecules were more ordered at the oil/ionic liquid interfaces compared to the air/ionic liquid interfaces, but the decrease of the entropy due to the interfacial orientation of ionic liquid was compensated by the increase of the entropy due to the contact of different chemical species. The initial spreading coefficients and the Hamaker constants indicated that all the oil phases spread at the air/ionic liquid interfaces spontaneously, and form the complete wetting films.  相似文献   

10.
The Gibbs adsorption isotherm for planar liquid crystal/fluid interfaces is derived using the anisotropic Gibbs-Duhem equation. The Gibbs adsorption isotherm for planar interfaces is used to analyze the adsorption-driven orientation transition in aqueous solutions of anionic surfactants in contact with rodlike uniaxial nematic liquid crystal films. In qualitative agreement with experiments, the model predicts that, as the surfactant concentration increases, the tangential (planar) average molecular orientation of the liquid crystal with respect to the interface undergoes a transition to a normal (homeotropic) orientation. The anchoring coefficient or strength of anisotropic component of the interfacial tension is shown to depend on the surfactant's concentration. Analyzing the response to addition of a co-cation, the model reveals that, as the fractional coverage of the surfactant's chains increases, the interpenetration of liquid crystal molecules between the adsorbed surfactant tails promotes the orientation transition; at even higher surfactant chain concentrations, interpenetration is hindered because of lack of available space and a random surface orientation emerges. Thus, for aqueous surfactant solutions in contact with nematic liquid crystals, increasing the surfactant concentration leads to the following interfacial liquid crystal orientation transition cascade, planar orientation --> homeotropic orientation --> random orientation, which can lead to new sensor capabilities and surface structuring processes.  相似文献   

11.
A molecular dynamics simulation was performed to study the effect of an applied force on heat transfer at the interface of model diamond [111] nanosurfaces. The force was applied to a small, hot nanosurface at 800, 1000, or 1200 K brought into contact with a larger, colder nanosurface at 300 K. The relaxation of the initial nonequilibrium interfacial force occurs on a subpicosecond time scale, much shorter than that required for heat transfer. Heat transfer occurs with exponential kinetics and a rate constant that increases linearly with the interfacial force according to 7 x 10(-4) ps(-1)/nN. This rate constant only increases by at most 10% as the temperature of the hot surface is increased from 800 to 1200 K. Replacing the interfacial H-atoms on both surfaces by D atoms also has a very small effect on the heat transfer. However, if one nanosurface has H atoms on its interface and the other nanosurface's interface has D atoms, then there is a marked 25% decrease in the rate constant for heat transfer. Increasing the size of the hot surface, and, thus, the interfacial contact area, increases the rate of heat transfer but not the rate constant. For the same interfacial force, different anharmonic models for the nanosurfaces' potential energy function give the same heat transfer rate constant. The possibility of quantum effects for heat transfer across the diamond interface is considered.  相似文献   

12.
The spreading of a partially wetting aqueous drop in air on a hydrophobic surface can be facilitated by the adsorption of surfactants from the drop phase onto the air/aqueous and aqueous/hydrophobic solid interfaces of the drop. At the contact line at which these interfaces meet, conventional surfactants with a linear alkyl hydrophobic chain attached to a polar group adsorb onto the surfaces, forming monolayers which remain distinct as they merge at the contact juncture. The adsorption causes a decrease in the interfacial tensions and reduction in the contact angle but the angle remains above zero so the drop is still nonwetting. Trisiloxane surfactants with a T-shaped geometry in which the hydrophobic group is composed of a trisiloxane oligomer with a polar group attached at the center of the chain can give rise to a zero contact angle at the contact line and complete wetting (superspreading). Experimental evidence suggests the adsorption of the T-shaped molecule, in addition to significantly decreasing the tensions of the interfaces (relative to the conventional surfactants), promotes the formation of a precursor film consisting of a surfactant bilayer at the contact line which facilitates the spreading. The aim of this study is to use molecular dynamics to examine if the T-shaped structure can promote spreading by the formation of a bilayer and to contrast this case with that of the linear chain surfactant where complex assembly does not occur. The simulation models the solvent as a monatomic liquid, the substrate as a particle lattice, and the surfactants as united atom structures, with all interactions given by Lennard-Jones potentials. We start with a base case in which the solvent partially wets a substrate comprised of a lattice of particles. We demonstrate that adsorbed T-shaped surfactant monolayers can, when the interaction between the solvent and the hydrophile particles is strong enough, assemble into a bilayer, allowing the drop to extend to a thin planar film. In the case of the flexible linear chain surfactant, there is no interaction between the monolayers on the two interfaces in the case of a strong hydrophile-solvent interaction and less coordination for a weaker interaction. In either case, the monolayers remain distinct, as the surfactant only marginally improves wetting.  相似文献   

13.
Using molecular dynamics simulations with Tersoff reactive many-body potential for Si-Si, Si-C, and C-C interactions, we have calculated the thermal conductance at the interfaces between carbon nanotube (CNT) and silicon at different applied pressures. The interfaces are formed by axially compressing and indenting capped or uncapped CNTs against 2 x 1 reconstructed Si surfaces. The results show an increase in the interfacial thermal conductance with applied pressure for interfaces with both capped and uncapped CNTs. At low applied pressure, the thermal conductance at interface with uncapped CNTs is found to be much higher than that at interface with capped CNTs. Our results demonstrate that the contact area or the number of bonds formed between the CNT and Si substrate is key to the interfacial thermal conductance, which can be increased by either applying pressure or by opening the CNT caps that usually form in the synthesis process. The temperature and size dependences of interfacial thermal conductance are also simulated. These findings have important technological implications for the application of vertically aligned CNTs as thermal interface materials.  相似文献   

14.
Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis on these adhesion forces to calculate bacterial transmission probabilities from lens case to corneas with a contact lens as an intermediate. Also a new surface thermodynamic parameter was introduced, the interfacial free energy of transmission, which in essence compares the interfacial free energies of bacterial adhesion, calculated from measured contact angles with liquids on the donating and receiving surfaces in the transmission process. Bacterial adhesion forces were generally strongest among all eight strains for the lens case (-6.5 to -12.0 nN) and corneas (-3.5 to -11.5 nN), while contact lenses (-0.6 to -13.1 nN) exerted slightly smaller adhesion forces. Consequently, bacterial transmission from lens case to contact lens yielded a smaller contribution in the final transmission than from contact lens to cornea. Bacterial transmission probabilities as derived from force analyses were higher when the interfacial free energies of transmission were more negative, which is in line with surface thermodynamic principles. Therewith this parameter could provide useful in analyzing other bacterial transmission phenomena between donating and receiving surfaces as well.  相似文献   

15.
We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.  相似文献   

16.
Methyl-terminated, n-type, (111)-oriented Si surfaces were prepared via a two-step chlorination-alkylation method. This surface modification passivated the Si surface toward electrochemical oxidation and thereby allowed measurements of interfacial electron-transfer processes in contact with aqueous solutions. The resulting semiconductor/liquid junctions exhibited interfacial kinetics behavior in accord with the ideal model of a semiconductor/liquid junction. In contrast to the behavior of H-terminated Si(111) surfaces, current density vs. potential measurements of CH(3)-terminated Si(111) surfaces in contact with an electron acceptor having a pH-independent redox potential (methyl viologen(2+/+)) were used to verify that the band edges of the modified Si electrode were fixed with respect to changes in solution pH. The results provide strong evidence that the energetics of chemically modified Si interfaces can be fixed with respect to pH and show that the band-edge energies of Si can be tuned independently of pH-derived variations in the electrochemical potential of the solution redox species.  相似文献   

17.
18.
Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.  相似文献   

19.
A novel method is presented for generating periodic surfaces. Such periodic surfaces appear in all systems which are characterized by internal interfaces and which additionally exhibit ordering. One example are systems of AB diblock copolymers, where the internal interfaces are formed by the chemical bonds between the A and B blocks. In these systems at least two bicontinuous phases are formed: the ordered bicontinuous double diamond phase and the gyroid phase. In these phases the ordered domains of A monomers and B monomers are separated by a periodic interface of the same symmetry as the phases themselves. Here we present a novel method for the generation of such periodic surfaces based on the simple Landau-Ginzburg model of microemulsions. We test the method on four known minimal periodic surfaces, find two new surfaces of cubic symmetry, and show how to obtain periodic surfaces of high genus and n-tuply continuous phases (n > 2). So far only bicontinuous (n = 2) phases have been known. We point out that the Landau model used here should be generic for all systems characterized by internal interfaces, including the diblock copolymer systems.  相似文献   

20.
We show that highly enhanced and selective adhesion can be achieved between surfaces patterned with complementary microchannel structures. An elastic material, poly(dimethylsiloxane) (PDMS), was used to fabricate such surfaces by molding into a silicon master with microchannel profiles patterned by photolithography. We carried out adhesion tests on both complementary and mismatched microchannel/micropillar surfaces. Adhesion, as measured by the energy release rate required to propagate an interfacial crack, can be enhanced by up to 40 times by complementary interfaces, compared to a flat control, and slightly enhanced for some special noncomplementary samples, despite the nearly negligible adhesion for other mismatched surfaces. For each complementary surface, we observe defects in the form of visible striations, where pillars fail to insert fully into the channels. The adhesion between complementary microchannel surfaces is enhanced by a combination of a crack-trapping mechanism and friction between a pillar and channel and is attenuated by the presence of defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号