首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Absolute bond dissociation energies (BDEs) of glycylglycine (GG) and glycylglycylglycine (GGG) to sodium and potassium cations and sequential bond energies of glycine (G) in Na+G2 were determined experimentally by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. Experimental results showed that the binding energies follow the order of Na+ > K+ and M+GGG > M+GG > M+G. Theoretical calculations at the B3LYP/6-311+G(d) level show that all complexes had charge-solvated structures (nonzwitterionic) with either [CO,CO] bidentate or [N,CO,CO] tridentate coordination for M+GG complexes, [CO,CO,CO] tridentate or [N,CO,CO,CO] tetradentate coordination for M+GGG complexes, and [N,CO,N,CO] tetradentate coordination for Na+G2. Ab initio calculations at three different levels of theory (B3LYP, B3P86, and MP2(full) using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d) level) show good agreement with the experimental bond energies. This study demonstrates for the first time that TCID measurements of absolute BDEs can be successfully extended to biological molecules as complex as a tripeptide.  相似文献   

2.
含Cu咪唑桥联异多核配合物的合成、表征及ESR研究   总被引:1,自引:0,他引:1  
陈东  唐雯霞  戴安邦 《化学学报》1990,48(6):547-553
用具有低自旋d^6构型的[(NH3)5MIm]^2^+, [(en)2Co(Im)2]^+(M=Co, Rh; Im^-为咪唑基)为配体与配位未饱和的含Cu单核配合物作用, 定向合成了八种新的咪唑桥联含Cu异双核、异三核和异五核配合物。对它们进行了元素分析、差热失重分析、摩尔电导测定及反射光谱研究, 确证了配合物的组成及分子中咪唑桥的存在, 通过对各配合物的ESR谱测定, 得到了它们的自旋Hamilton参数和键参数, 讨论了配合物的成键性质。  相似文献   

3.
Collision-induced dissociation of complexes of Cu+ bound to a variety of N-donor ligands (N-L) with Xe is studied using guided ion beam tandem mass spectrometry. The N-L ligands examined include pyridine, 4,4-dipyridyl, 2,2-dipyridyl, and 1,10-phenanthroline. In all cases, the primary and lowest-energy dissociation channel observed corresponds to the endothermic loss of a single intact N-L ligand. Sequential dissociation of additional N-L ligands is observed at elevated energies for the pyridine and 4,4-dipyridyl complexes containing more than one ligand. Ligand exchange processes to produce Cu+Xe are also observed as minor reaction pathways in several systems. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, the kinetic and internal energy distributions of the reactants, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the neutral N-L ligands and the Cu+(N-L)x complexes. The relative stabilities of the various conformations of these N-L ligands and Cu+(N-L)x complexes as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G* optimized geometries. Excellent agreement between theory and experiment is observed for all complexes containing one or two N-L ligands, while theory systematically underestimates the strength of binding for complexes containing more than two N-L ligands. The ground-state structures of these complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd-hybridization and repulsive ligand-ligand interactions. The nature of the binding interactions in the Cu+(N-L)x complexes are examined via natural bond orbital analyses.  相似文献   

4.
B3LYP geometry optimizations for the [MNH2]+ complexes of the first-row transition metal cations (Sc+-Cu+) were performed. Without any exception the ground states of these unsaturated amide complexes were calculated to possess planar geometries. CASPT2 binding energies that were corrected for zero-point energies and including relativistic effects show a qualitative trend across the series that closely resembles the experimental observations. The electronic structures for the complexes of the early and middle transition metal cations (Sc+-Co+) differ from the electronic structures derived for the complexes of the late transition metal cations (Ni+ and Cu+). For the former complexes the relative higher position of the 3d orbitals above the singly occupied 2p(pi) HOMO of the uncoordinated NH2 induces an electron transfer from the 3d shell to 2p(pi). The stabilization of the 3d orbitals from the left to the right along the first-row transition metal series causes these orbitals to become situated below the HOMO of the NH2 ligand for Ni+ and Cu+, preventing a transfer from occurring in the [MNH2]+ complexes of these metal cations. Analysis of the low-lying states of the amide complexes revealed a rather unique characteristic of their electronic structures that was found across the entire series. Rather exceptionally for the whole of chemistry, pi-type interactions were calculated to be stronger than the corresponding sigma-type interactions. The origin of this extraordinary behavior can be ascribed to the low-lying sp2 lone pair orbital of the NH2 ligand with respect to the 3d level.  相似文献   

5.
Complexes of Zn(2+)(H(2)O)(n), where n = 6-12, are examined using infrared photodissociation (IRPD) spectroscopy, blackbody infrared radiative dissociation (BIRD), and theory. Geometry optimizations and frequency calculations are performed at the B3LYP/6-311+G(d,p) level along with single point energy calculations for relative energetics at the B3LYP, B3P86, and MP2(full) levels with a 6-311+G(2d,2p) basis set. The IRPD spectrum of Zn(2+)(H(2)O)(8) is most consistent with the calculated spectrum of the five-coordinate MP2(full) ground-state (GS) species. Results from larger complexes also point toward a coordination number of five, although contributions from six-coordinate species cannot be ruled out. For n = 6 and 7, comparisons of the individual IRPD spectra with calculated spectra are less conclusive. However, in combination with the BIRD and laser photodissociation kinetics as well as a comparison to hydrated Cu(2+) and Ca(2+), the presence of five-coordinate species with some contribution from six-coordinate species seems likely. Additionally, the BIRD rate constants show that Zn(2+)(H(2)O)(6) and Zn(2+)(H(2)O)(7) complexes are less stable than Zn(2+)(H(2)O)(8). This trend is consistent with previous work that demonstrates the enthalpic favorability of the charge separation process forming singly charged hydrated metal hydroxide and protonated water complexes versus loss of a water molecule for complexes of n ≤ 7. Overall, these results are most consistent with the lowest-energy structures calculated at the MP2(full) level of theory and disagree with those calculated at B3LYP and B3P86 levels.  相似文献   

6.
Density functional theory (DFT) calculations on trans-dioxo metal complexes containing saturated amine ligands, trans-[M(O)2(NH3)2(NMeH2)2]2+ (M=Fe, Ru, Os), were performed with different types of density functionals (DFs): 1) pure generalized gradient approximations (pure GGAs): PW91, BP86, and OLYP; 2) meta-GGAs: VSXC and HCTH407; and 3) hybrid DFs: B3LYP and PBE1PBE. With pure GGAs and meta-GGAs, a singlet d2 ground state for trans-[Fe(O)2(NH3)2(NMeH2)2]2+ was obtained, but a quintet ground state was predicted by the hybrid DFs B3LYP and PBE1PBE. The lowest transition energies in water were calculated to be at lambda approximately 509 and 515 nm in the respective ground-state geometries from PW91 and B3LYP calculations. The nature of this transition is dependent on the DFs used: a ligand-to-metal charge-transfer (LMCT) transition with PW91, but a pi(Fe-O)-->pi*(Fe-O) transition with B3LYP, in which pi and pi* are the bonding and antibonding combinations between the dpi(Fe) and ppi(O(2-)) orbitals. The FeVI/V reduction potential of trans-[Fe(O)2(NH3)2NMeH2)2]2+ was estimated to be +1.30 V versus NHE based on PW91 results. The [Fe(qpy)(O)2](n+) (qpy=2,2':6',2':6',2':6',2'-quinquepyridine; n=1 and 2) ions, tentatively assigned to dioxo iron(V) and dioxo iron(VI), respectively, were detected in the gas phase by high-resolution ESI-MS spectroscopy.  相似文献   

7.
The deprotonation of Cu2+ complexes with uracil, 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil has been investigated by means of B3LYP/ 6-311+G(2df,2p)//6-31G(d) calculations. The most stable [(uracil-H)Cu]+ and [(thiouracil-H)Cu]+ complexes correspond to bidentate structures in which Cu interacts with the deprotonated ring-nitrogen atom and with the oxygen or the sulfur atom of the adjacent carbonyl or thiocarbonyl group. For 2- and 4-thiouracil derivatives, the structures in which the metal cation interacts with the thiocarbonyl group are clearly favored with respect to those in which Cu interacts with the carbonyl group. This is at variance with what was found to be the most stable structure of the corresponding Cu2+ complexes, where association to the carbonyl oxygen was always preferred over the association to the thiocarbonyl group. The [(uracil-H)Cu]+ and [(thiouracil-H)Cu]+ complexes can be viewed as the result of Cu+ attachment to the uracil-H and thiouracil-H radicals formed by the deprotonation of the corresponding uracil+* and thiouracil+* radical cations. As a matter of fact their relative stability is dictated by the intrinsic stability of the corresponding uracil-H and thiouracil-H radical and by the fact that, in general, the N3-deprotonated site is a better electron donor than the N1. In all complexes, the bonding of Cu both to nitrogen and sulfur and to nitrogen and oxygen has a significantly large covalent character.  相似文献   

8.
Host-guest complexes of tetramethylcavitand with different ammonium cations were investigated by using a quantum chemical method at the density functional level (BP86, B3 LYP). The NH4+ cation is strongly bound to the host. Increasing methyl substitution at the cation decreases its inclination towards the complex formation. The calculated data are in line with results from electrospray ionization mass spectrometry (ESI-MS) experiments. They reveal stable aggregates only for the NH4+ cation and for the primary alkylammonium cations.  相似文献   

9.
To investigate the solvation structure of the Cu(II) ion in liquid ammonia, ab initio quantum-mechanical/molecular-mechanical (QM/MM) molecular dynamics (MD) simulations were carried out at Hartree Fock (HF) and hybrid density functional theory (B3 LYP) levels. A sixfold-coordinated species was found to be predominant in the HF case whereas five- and sixfold-coordinated complexes were obtained in a ratio 2:1 from the B3 LYP simulation. In contrast to hydrated Cu(II), which exhibits a typical Jahn-Teller distortion, the geometrical arrangement of ligand molecules in the case of ammonia can be described as a [2 + 4] ([2 + 3]) configuration with 4 (3) elongated copper-nitrogen bonds. First shell solvent exchange reactions at picosecond rate took place in both HF and B3 LYP simulations, again in contrast to the more stable sixfold-coordinated hydrate. NH3 ligands apparently lead to strongly accelerated dynamics of the Cu(II) solvate due to the "inverse" [2 + 4] structure with its larger number of elongated copper-ligand bonds. Several dynamical properties, such as mean ligand residence times or ion-ligand stretching frequencies, prove the high lability of the solvated complex.  相似文献   

10.
The binding interactions in complexes of Zn(+) with nitrogen donor ligands, (N-L) = pyridine (x = 1-4), 4,4'-dipyridyl (x = 1-3), 2,2'-dipyridyl (x = 1-2), and 1,10-phenanthroline (x = 1-2), are examined in detail. The bond dissociation energies (BDEs) for loss of an intact ligand from the Zn(+)(N-L)(x) complexes are reported. Experimental BDEs are obtained from thermochemical analyses of the threshold regions of the collision-induced dissociation cross sections of Zn(+)(N-L)(x) complexes. Density functional theory calculations at the B3LYP/6-31G* level of theory are performed to determine stable structures of these species and to provide molecular parameters needed for the thermochemical analysis of experimental data. Relative stabilities of the various conformations of these N-donor ligands and their complexes to Zn(+) as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) and M06/6-311+G(2d,2p) levels of theory using the B3LYP/6-31G* optimized geometries. The experimental BDEs for the Zn(+)(N-L)(x) complexes are in reasonably good agreement with values derived from density functional theory calculations. BDEs derived from M06 calculations provide better agreement with the measured values than those based on B3LYP calculations. Trends in the sequential BDEs are explained in terms of sp polarization of Zn(+) and repulsive ligand-ligand interactions. Comparisons are made to the analogous Cu(+)(N-L)(x) and Ni(+)(N-L)(x) complexes previously studied.  相似文献   

11.
Density functional (B3LYP, B3PW91, X3LYP, BP86, PBEPBE, PW91PW91, and M06) and ab initio (MP2, MP4sdq, CCSD, and CCSD(T)) calculations with extended basis sets (6-311+G**, TZVP, LANL2DZ+p, and SDD+p, the latter including extra polarization and diffuse functions) indicate that HCN exchange on [Cu(HCN)4]+ proceeds via an associative interchange (Ia) mechanism and a D3h transition structure {[Cu(HCN)5]+}?. The activation barrier, relative to the model complex [Cu(HCN)4]+·HCN, varies modestly, depending on the computational level. Typical values are 8.0?kcal?M?1 (B3LYP/6-311+G**), 6.0?kcal?M?1 (M06/6-311+G**), and 4.8?kcal?M?1 (CCSD(T)/6-311+G**//MP2(full)/6-311+G**). Inclusion of an implicit solvent model (B3LYP(CPCM)/6-311+G**) leads to an activation barrier of 5.8?kcal?mol?1. Comparison of the HCN exchange mechanisms on [Li(HCN)4]+ (limiting associative, A) and [Cu(HCN)4]+ (associative interchange, Ia) reveals that π back donation in the equatorial Cu–N bonds in the transition state determines the mechanism.  相似文献   

12.
The solvation of Cu+ by methanol (MeOH) was studied via examination of the kinetic energy dependence of the collision-induced dissociation of Cu+(MeOH)x complexes, where x = 1-6, with Xe in a guided ion beam tandem mass spectrometer. In all cases, the primary and lowest-energy dissociation channel observed is the endothermic loss of a single MeOH molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, kinetic and internal energy distributions of the reactants, and lifetimes for dissociation. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the Cu+(MeOH)x complexes and their dissociation products. The relative stabilities of various conformations and theoretical BDEs are determined from single-point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G*-optimized geometries. The relative stabilities of the various conformations of the Cu+(MeOH)x complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd hybridization, hydrogen-bonding interactions, electron donor-acceptor natural bond orbital stabilizing interactions, and destabilization arising from ligand-ligand repulsion.  相似文献   

13.
14.
采用从头计算MP2方法和密度泛函理论方法,对过渡金属团簇[PdAu8(PR3)8]2+(R=Me,OMe,H,F,Cl,CN)的几何结构、电子结构以及团簇各组成部分之间的结合能进行了研究.MP2方法和SVWN局域泛函能够对团簇的结构给予准确的描述,而离域泛函BP86,PBE,BLYP和杂化泛函B3LYP则过高地估计了团簇的几何结构参数.电子结构研究表明Pd,Au原子通过d电子的成键作用构成团簇内核[PdAu8]2+,[PdAu8]2+与PR3配体则通过"σ给予/π反馈"模式成键.PR3配体与[PdAu8]2+的结合能够加强Pd-Au之间的成键作用,增大前线轨道能级间隙,从而提高团簇的稳定性.PR3配体中 R 基团供、吸电能力的变化对[PdAu8(PR3)8]2+结构的影响较小,但对[PdAu8]2+ -pR3结合能的影响较大.能量分析显示不同PR3与[PdAu8]2+之间具有相近的轨道作用能,与R基团供、吸电能力相关的非轨道作用能成为影响两者连接牢同程度的决定因素.  相似文献   

15.
The reaction energy profile for H2 + OH → H + H2O was computed using HF, MP2, MP4, QCISD, G1, G2, and G2MP2 ab initio methods. In addition, the B3LYP, B3P86, B3PW91, BLYP, BP291, and SVWN density functional theory (DFT) methods were also used. All the ab initio methods, with the exception of the G series, produced much higher activation barriers and heats of reaction than the experimental values. On the other hand, the DFT methods produced negative forward and reverse barriers which were too low, with the exception of the hybrid DFT methods. The G2 ab initio method generated energies which deviated from the experimental values by ∼ 1 kcal/mol and therefore should be considered a very accurate computational method. The hybrid DFT methods produced positive forward reaction barriers with energies that were 2–4 kcal/mol lower than the experimental values. The geometries of the transition state and energies computed by the ab initio and DFT methods were compared. These results suggest that, in the hybrid exchange functional, the portion of the Slater exchange term should be increased. This may be the reason why the computed energies were too low. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 639–644, 1997  相似文献   

16.
A previous approach (Hancock, R. D.; Bartolotti, L. J. Inorg. Chem. 2005, 44, 7175) using DFT calculations to predict log K1 (formation constant) values for complexes of NH3 in aqueous solution was used to examine the solution chemistry of Rg(I) (element 111), which is a congener of Cu(I), Ag(I), and Au(I) in Group 1B. Rg(I) has as its most stable presently known isotope a t(1/2) of 3.6 s, so that its solution chemistry is not easily accessible. LFER (Linear free energy relationships) were established between DeltaE(g) calculated by DFT for the formation of monoamine complexes from the aquo ions in the gas phase, and DeltaG(aq) for the formation of the corresponding complexes in aqueous solution. For M2+, M3+, and M4+ ions, the gas-phase reaction was [M(H2O)6]n+(g) + NH3(g) = [M(H2O)5NH3]n+(g) + H2O(g) (1), while for M+ ions, the reaction was [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (2). A value for DeltaG(aq) and for DeltaE for the formation of M = Cu2+ in reaction 1, not obtained previously, was calculated by DFT and shown to correlate well with the LFER obtained previously for other M2+ ions, supporting the LFER approach used here. The simpler use of DeltaE values instead of DeltaG(aq) values calculated by DFT for formation of monoamine complexes in the gas phase leads to LFER as good as the DeltaG-based correlations. Values of DeltaE were calculated by DFT to construct LFER with M+ = H+, and the Group 1B metal ions Cu+, Ag+, Au+, and Rg+, and with L = NH3, H2S, and PH3 in reaction 3: [M(H2O)2]+(g) + L(g) = [M(H2O)L]+g) + H2O(g) (3). Correlations involving DeltaE calculated by DMol3 for H+, Cu+, Ag+, and Au+ could reliably be used to construct LFER and estimate unknown log K1 values for Rg(I) complexes of NH3, PH3, and H2S calculated using the ADF (Amsterdam Density Functional) code. Log K1 values for Rg(I) complexes are predicted that suggest the Rg(I) ion to be a very strong Lewis acid that is extremely "soft" in the Pearson hard and soft acids and bases sense.  相似文献   

17.
王华静  傅尧  王晨  郭庆祥 《化学学报》2008,66(3):362-370
利用六种密度泛函理论方法(B3LYP, B3P86, MPW1K, TPSS1KCIS, X3LYP, BMK)对碳氯键离解能进行理论计算,结果发现几种新发展的密度泛函(DFT)方法用于碳氯键离解能的计算比传统的B3LYP有较大的改善,其中对能量估算相对准确的B3P86方法对碳氯键离解能的计算精度最高,对17个分子中碳氯键离解能计算的平均绝对偏差为6.58 kJ/mol。最后运用B3P86方法对一系列环境危害较大,但可通过光化学降解和生物降解的氯代有机物的碳氯键离解能值进行预测,并讨论了影响碳氯键离解能的结构性质关系。  相似文献   

18.
运用M06-2X和ωB97XD方法分别在6-311++G(2d,p)和TZVP基组水平上,对脯氨酸(Pro)的15种构象与Cu、Cu+和Cu2+形成的多种配合物的几何结构、能量学特征、振动光谱和电子结构等进行计算研究.四种水平得到20种[Pro-Cu]、16种[Pro-Cu]+和16种[Pro-Cu]2+稳定结构.[Pro-Cu]和[Pro-Cu]+体系中出现12种Pro构象,而[Pro-Cu]2+体系中出现11种Pro构象,三种体系中最稳定的结构都不是由能量最低的Pro构象生成的.在结构CI3、CI4、CII7和CII8中,Pro的羧基氢转移到亚氨基氮形成两性离子与Cu双配位结合.[Pro-Cu]0/1+/2+体系四种水平计算相对能差范围逐渐增加,结合能分别在-60.0--5.0 kJ·mol-1、-340.0--170.0 kJ·mol-1和-1100.0--860.0 kJ·mol-1范围,配位体系中Pro的变形能逐渐增加.N―H和O―H键伸缩振动频率普遍发生红移,配位体系中部分电荷从Pro转移到Cu上,在[Pro-Cu]2+体系中单配位结构中电荷转移最多,约为单位负电荷.  相似文献   

19.
A conformational search was performed for the 12-crown-4 (12c4)-alkali metal cation complexes using two different methods, one of them is the CONFLEX method, whereby eight conformations were predicted. Computations were performed for the eight predicted conformations at the HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6-31+G*, MP2/6-31+G*//B3LYP/6-31+G*, and MP2/6-31+G* levels. The calculated energies predict a C4 conformation for the 12c4-Na+, -K+, -Rb+, and -Cs+ complexes and a C(s) conformation for the 12c4-Li+ complex to be the lowest energy conformations. For most of the conformations considered, the relative energies, with respect to the C4 conformation, at the MP2/6-31+G*//B3LYP/6-31+G* are overestimated, compared to those at the MP2/6-31+G* level, the highest level of theory considerd in this report, by 0.2 kcal/mol. Larger relative energy differences are attributed to larger differences between the B3LYP and MP2 optimized geomtries. Binding enthalpies (BEs) were calculated at the above-mentioned levels for the eight conformations. The agreement between the calculated and experimental BEs is discussed.  相似文献   

20.
The performance of six density functional theory (DFT) methods has been tested for a zeolite cluster containing three tetrahedral atoms (3T) and the complexes it forms with water and methanol molecules. The DFT methods (BLYP, BP86, BPW91, B3LYP, B3P86, B3PW91) give results in good agreement with second-order perturbation theory (MP2). The results in this paper provide evidence of the suitability of DFT methods for studying hydrogen-bonded adsorption complexes in zeolites. Generally, the hybrid DFT methods are in closer agreement with experiment and MP2 than the pure DFT methods for geometrical parameters. The only exception is the Z geometry, perhaps due to its anionic character. All DFT methods give results in good overall agreement with MP2 for intramolecular geometrical parameters of the adsorption complexes, intramolecular vibrational frequencies, and adsorption energies. The B3LYP method gives intermolecular geometries and intermolecular vibrational frequencies which are closest to those obtained from the MP2 method. Thus, the B3LYP method seems to be the best choice for a density functional treatment of molecular adsorption in zeolite systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号