首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single crystals of pure, Ca2+ and Sr2+ doped NH4Sb3F10 are grown by slow evaporation technique. The effect of dopants on the growth and physicochemical properties also have been investigated and reported for the first time. The grown crystals are characterized with the aid of single crystal X-ray diffractometry to confirm the crystal structure. EDAX studies are done to confirm the presence of dopants in the crystal lattice. The vibrational frequencies of various group ligands in the crystals have been derived from the Fourier transform infrared (FT-IR) spectrum. From the optical absorption spectrum the band gap energy was calculated and it was found to be 5.76, 6.29 and 6.35 eV for pure, Ca2+ and Sr2+ doped NH4Sb3F10 crystals respectively. Thermal stability of the sample has been analysed using TG-DTA analysis. The activation energy of pure, Ca2+ and Sr2+ doped NH4Sb3F10 crystals were calculated from the dc conductivity measurements and it is found to be 0.2728, 0.2816 and 0.3622 eV Experimental results shows improved physicochemical properties when the dopant is added to the pure material.  相似文献   

2.
The nanocrystalline materials with the general formula Bi85Sb15−xNbx (x=0, 0.5, 1, 2, 3) were prepared by mechanical alloying and subsequent high-pressure sintering. Their transport properties involving electrical conductivity, Seebeck coefficient and thermal conductivity have been investigated in the temperature range of 80-300 K. The absolute value of Seebeck coefficient of Bi85Sb13Nb2 reaches a maximum of 161 μV/K at 105 K, which is 69% larger than that of Bi85Sb15 at the same temperature. The power factor and figure-of-merit are 4.45×10−3 WK−2m−1 at 220 K and 1.79×10−3 K−1 at 196 K, respectively. These results suggest that thermoelectric properties of Bi85Sb15 based material can be improved by Nb doping.  相似文献   

3.
A series of Sb-doped SnO2 samples, with doping levels 0, 3.1, 6.2, 11.9 and 14.0 at% Sb, has been hydrothermally prepared and characterized by X-ray powder diffraction. Diffraction lines were broadened, the line broadening being anisotropic. Both the line broadening and line anisotropy were dependent on the Sb doping level. The samples are tetragonal, space group P42/mnm and isostructural with TiO2(rutile). Sb doping of SnO2 causes the increase of unit-cell parameters. The structure of pure SnO2 and of samples containing 6.2 and 11.9 at% Sb has been refined by the Rietveld method. Crystal structure indicated that both Sb3+ and Sb5+ are substituted for Sn4+ in the SnO2 structure, Sb3+ being dominant for the investigated doped samples. The samples were also examined by 119Sn- and 121Sb-Mössbauer spectroscopy. Mössbauer spectroscopy confirmed the XRD results. Also, the values of the isomer shifts and quadrupole coupling constants indicated that the configuration around the Sb3+ site includes the presence of the stereochemically active lone pair electrons.  相似文献   

4.
Sm3+ doped Sb2Se3 nanorods were synthesized by the co-reduction method at 180 °C and pH=12 for 48 h. Powder XRD patterns indicate that the SmxSb2−xSe3 crystals (x=0.00-0.05) are isostructural with Sb2Se3. The cell parameters increase for Sm3+ upon increasing the dopant content (x). SEM images show that doping of Sm3+ ions in the lattice of Sb2Se3 results in nanorods. High-resolution transmission electron microscopic (HRTEM) studies reveal that the Sm0.05Sb1.95Se3 is oriented in the [1 0 −1] growth direction. UV-vis absorption reveals mainly electronic transitions of the Sm3+ ions in doped nanomaterials. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2Se3, show other emission bands originating from f-f transitions of the Sm3+ ions. The electrical conductance of Sm-doped Sb2Se3 is higher than undoped Sb2Se3 and increase with temperature.  相似文献   

5.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

6.
The alloys with the general formula of Bi85Sb15−xAgx (x=0, 1, 3, 5, 7) were prepared by mechanical alloying and subsequent pressureless sintering (Bi85Sb15 alloy was used for comparison). Their transport properties involving electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The maximum absolute value of Seebeck coefficient (120 μV/K) was found at 160 K in the alloy Bi85Sb15−xAgx (x=3). The figure-of-merit of alloy Bi85Sb15−xAgx (x=1) reached a maximum value of 2.16×10−3 K−1 at 219 K, which is as large again as that of the reference sample Bi85Sb15.  相似文献   

7.
A series of Cr-doped ZnO micro-rod arrays were fabricated by a spray pyrolysis method. X-ray diffraction patterns of the samples showed that the undoped and Cr-doped ZnO microrods exhibit hexagonal crystal structure. Surface morphology analysis of the samples has revealed that pure ZnO sample has a hexagonal microrod morphology. From X-ray photoelectron spectroscopy studies, the Cr 2p3/2 binding energy is found to be 577.3 eV indicating that the electron binding energy of the Cr in ZnO is almost the same as the binding energy of Cr3+ states in Cr2O3. The optical band gap Eg decreases slightly from 3.26 to 3.15 eV with the increase of actual Cr molar fraction from x = 0.00 to 0.046 in ZnO. Photoluminescence studies at 10 K show that the incorporation of chromium leads to a relative increase of deep level band intensity. It was also observed that Cr doped samples clearly showed ferromagnetic behavior; however, 2.5 at.% Cr doped ZnO showed remnant magnetization higher than that of 1.1 at.% and 4.6 at.% Cr doped samples, while 4.6 at.% Cr doped ZnO samples had a coercive field higher than the other dopings.  相似文献   

8.
We demonstrated the tunable contact resistance in pentacene thin film transistor (TFT) by inserting an organic-inorganic hybrid interlayer between Au electrode and pentacene layer. The contact resistance of pentacene-TFT varies with concentration of pentacene-TFT varies with concentration of MoOx in organic-inorganic hybrid interlayer. MoOx in organic-inorganic hybrid interlayer. The contact resistance of the device with 55 wt% MoOx doped pentacene interlayer is about 7.8 times smaller than that of device without interlayer at the gate voltage of −20 V. Comparing the properties of pentacene-TFT without interlayer, the performance of the pentacene-TFT with 55 wt% MoOx doped pentacene was significantly improved: saturation mobility increased from 0.39 to 0.87 cm2/V s, threshold voltage reduced from −21.3 to −7.2 V, and threshold swing varied from 3.75 to 1.39 V/dec. Our results indicated that the organic-inorganic hybrid interlayer is an effective way to improve the performance of p-channel OTFTs.  相似文献   

9.
YBa2Cu3O7−δ–BaTiO3 (4 wt.%) (YBCO–BTO (4%)) composite bulk polycrystalline sample has been synthesized by solid state reaction method. The structure of composite sample has been investigated by X-ray diffraction and magnetization measurements were carried out using MPMS SQUID VSM. The superconducting transition temperature of the YBCO–BTO (4%) sample was similar to that of pure YBCO. The critical current density (Jc) for YBCO–BTO (4%) sample increases significantly as compared to pure YBCO sample. The enhancement of the critical current density in the YBCO–BTO (4%) sample has been attributed to the presence of BaTiO3 nanoparticles acting as artificial pinning centres. The introduction of BaTiO3 particles in YBCO increases pinning force density from 0.71 GN/m2 to 1.41 GN/m2 at 4 K and 0.33 MN/m2 to 0.97 MN/m2 at 77 K.  相似文献   

10.
We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge–Te, Sb–Te and Te–Te bond lengths. In element substitutes Sb to form In–Te-like structure in the GST system. In–Te has a weaker bond strength compared with the Sb–Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation \( \alpha h\nu = \beta (h\nu - E_{\text{g }} )^{2} \) . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.  相似文献   

11.
The effect of bromine methanol (BM) etching and NH4F/H2O2 passivation on the Schottky barrier height between Au contact and semi-insulated (SI) p-Cd1−xZnxTe (x ≈ 0.09-0.18) was studied through current-voltage (I-V) and capacitance-voltage (C-V) measurements. Near-infrared (NIR) spectroscopy technique was utilized to determine the Zn concentration. X-ray photoelectron spectroscopy (XPS) for surface composition analysis showed that BM etched sample surface left a Te0-rich layer, however, which was oxidized to TeO2 and the surface [Te]/([Cd] + [Zn]) ratio restored near-stoichiometry after NH4F/H2O2 passivation. According to I-V measurement, barrier height was 0.80 ± 0.02-0.85 ± 0.02 eV for Au/p-Cd1−xZnxTe with BM etching, however, it increased to 0.89 ± 0.02-0.93 ± 0.02 eV with NH4F/H2O2 passivation. Correspondingly, it was about 1.34 ± 0.02-1.43 ± 0.02 eV and 1.41 ± 0.02-1.51 ± 0.02 eV by C-V method.  相似文献   

12.
Physical properties of In35Sb45Se20−xTex thin films with different compositions (x=2.5, 5, 7.5, 10, 12.5 and 15 at %) prepared by electron beam evaporation method are studied. X-ray diffraction results indicate that the as-evaporated films depend on the Te content and the crystallized compounds consist mainly of Sb2Se3 with small amount of Sb2SeTe2. Transmittance and reflectance of the films are found to be thickness dependent. Optical-absorption data indicate that the absorption mechanism is direct transition. Optical band gap values decrease with increase in Te content as well as with increase in film thickness.  相似文献   

13.
In this paper, n-type lead telluride (PbTe) compounds doped with Bi2Te3 have been successfully prepared by high pressure and high temperature (HPHT) technique. The composition-dependent thermoelectric properties of PbTe doped with Bi2Te3 have been studied at room temperature. The figure-of-merit, Z, for PbTe is very sentivite to the dopants, which could be improved largely although the doped content of Bi2Te3 is very small (<0.08 mol%). In addition, the maximum value reaches to 9.3×10−4 K−1, which is about 20% higher than that of PbTe alloyed with Bi2Te3 sintered at ambient pressure (7.6×10−4 K−1) and several times higher than that of small grain size PbTe containing other dopants. The improved thermoelectric performance in this study may be due to the effect of high pressure and the low lattice thermal conductivity resulting from Bi2Te3 as source of dopants.  相似文献   

14.
We have achieved, for the first time to our knowledge, lasing in a new type of telluride-tungstate glass host doped with neodymium: Nd3+:(0.8)TeO2-(0.2)WO3. Lasing was obtained at 1065 nm with two samples containing 0.5 mol% and 1.0 mol% Nd2O3. During gain-switched operation, slope efficiencies of 12% and 10% were obtained with the 0.5 mol% and 1.0 mol% doped samples, respectively, at a pulse repetition rate of 1 kHz. Judd-Ofelt analysis was further employed to determine the emission cross section σe at 1065 nm from the absorption spectra and lifetime data. The emission cross section from the Judd-Ofelt analysis came to 3.23 ± 0.09 × 10−20 cm2, in reasonable agreement with the value of 2.0 ± 0.13 × 10−20 cm2 obtained from the analysis of laser threshold data.  相似文献   

15.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

16.
Al doped Sb2Te3 material was proposed to improve the performance of phase-change memory. Crystallization temperature, activation energy, and electrical resistance of the Al doped Sb2Te3 films increase markedly with the increasing of Al concentration. The additional Al-Sb and Al-Te bonds enhance the amorphous thermal stability of the material. Al0.69Sb2Te3 material has a better data retention (10 years at 110 °C) than that of Ge2Sb2Te5 material (10 years at 87 °C). With a 100 ns width voltage pulse, SET and RESET voltages of 1.3 and 3.3 V are achieved for the Al0.69Sb2Te3 based device.  相似文献   

17.
Au/GaN/n-GaAs structure has been fabricated by the electrochemically anodic nitridation method for providing an evidence of achievement of stable electronic passivation of n-doped GaAs surface. The change of the electronic properties of the GaAs surface induced by the nitridation process has been studied by means of current-voltage (I-V) characterizations on Schottky barrier diodes (SBDs) shaped on gallium nitride/gallium arsenide structure. Au/GaN/n-GaAs Schottky diode that showed rectifying behavior with an ideality factor value of 2.06 and barrier height value of 0.73 eV obeys a metal-interfacial layer-semiconductor (MIS) configuration rather than an ideal Schottky diode due to the existence of GaN at the Au/GaAs interfacial layer. The formation of the GaN interfacial layer for the stable passivation of gallium arsenide surface is investigated through calculation of the interface state density Nss with and without taking into account the series resistance Rs. While the interface state density calculated without taking into account Rs has increased exponentially with bias from 2.2×1012 cm−2 eV−1 in (Ec−0.48) eV to 3.85×1012 cm−2 eV−1 in (Ec−0.32) eV of n-GaAs, the Nss obtained taking into account the series resistance has remained constant with a value of 2.2×1012 cm−2 eV−1 in the same interval. This has been attributed to the passivation of the n-doped GaAs surface with the formation of the GaN interfacial layer.  相似文献   

18.
The amorphous-to-crystalline transition of Ge/Sb2Te3 nanocomposite multilayer films with various thickness ratios of Ge to Sb2Te3 were investigated by utilizing in situ temperature-dependent film resistance measurements. The crystallization temperature and activation energy for the crystallization of the multilayer films increased with the increase in thickness ratio of Ge to Sb2Te3. The difference in sheet resistance between amorphous and crystalline states could reach as high as 104 Ω/□. The crystallization temperature and activation energy for the crystallization of Ge/Sb2Te3 nanocomposite multilayer films was proved to be larger than that of conventional Ge2Sb2Te5 film, which ensures a better data retention for phase-change random access memory (PCRAM) use. A data retention temperature for 10 years of the amorphous state [Ge (2 nm)/Sb2Te3 (3 nm)]40 film was estimated to be 165 °C. Transmission electron microscopy (TEM) images revealed that Ge/Sb2Te3 nanocomposite multilayer films had layered structures with clear interfaces.  相似文献   

19.
The applications of newer Sb2S3 material as a suitable absorber material for the solar cells have been effected by the toxicity of Sb. The present study is an effort to synthesize lower Sb contents Sn doped Sb2S3 materials by retaining or improving the morphological and optical properties. SnCl2 and SbCl3 are used respectively as Sn and Sb sources, while Na2S2O3 has been used as a source of S in chemical bath deposition method. Bath temperature was maintained at 10 °C and the deposition time was 4 h and the annealing of the films in vacuum was done for 2 h at 250 °C. X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and ultraviolet/visible light spectroscopy have been used for the study of structural, morphological and the optical properties. The chemical composition determined from RBS is Sn0.11Sb2S3. Phase analysis confirms the orthorhombic Sb2S3 phase with b and c axis as the preferred ones for the impurity Sn atoms. Grain growth at lower deposition temperature is enhanced on the account of doping. Nanosized spherical particles are seen in the optical micrographs. Annealing lowers the band gap, the values being 1.50 and 1.31 eV for the unannealed and the annealed samples respectively.  相似文献   

20.
Zinc oxide doped with Al (AZO) thin films were prepared on borosilicate glass substrates by dip and dry technique using sodium zincate bath. Effects of doping on the structural and optical properties of ZnO film were investigated by XRD, EPMA, AFM, optical transmittance, PL and Raman spectroscopy. The band gap for ZnO:Al (5.0 at. wt.%) film was found to be 3.29 eV compared with 3.25 eV band gap for pure ZnO film. Doping with Al introduces aggregation of crystallites to form micro-size clusters affecting the smoothness of the film surface. Al3+ ion was found to promote chemisorption of oxygen into the film, which in turn affects the roughness of the sample. Six photoluminescence bands were observed at 390, 419, 449, 480, 525 and 574 nm in the emission spectra. Excitation spectra of ZnO film showed bands at 200, 217, 232 and 328 nm, whereas bands at 200, 235, 257 and 267 nm were observed for ZnO:Al film. On the basis of transitions from conduction band or deep donors (CB, Zni or VOZni) to valence band and/or deep acceptor states (VB, VZn or Oi or OZn), a tentative model has been proposed to explain the PL spectra. Doping with Al3+ ions reduced the polar character of the film. This has been confirmed from laser Raman studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号