首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
In this article, we propose a novel method for transforming a time series into a complex network graph. The proposed algorithm is based on the spatial distribution of a time series. The characteristics of geometric parameters of a network represent the dynamic characteristics of a time series. Our algorithm transforms, respectively, a constant series into a fully connected graph, periodic time series into a regular graph, linear divergent time series into a tree, and chaotic time series into an approximately power law distribution network graph. We find that when the dimension of reconstructed phase space increases, the corresponding graph for a random time series quickly turns into a completely unconnected graph, while that for a chaotic time series maintains a certain level of connectivity. The characteristics of the generated network, including the total edges, the degree distribution, and the clustering coefficient, reflect the characteristics of the time series, including diverging speed, level of certainty, and level of randomness. This observation allows a chaotic time series to be easily identified from a random time series. The method may be useful for analysis of complex nonlinear systems such as chaos and random systems, by perceiving the differences in the outcomes of the systems—the time series—in the identification of the systemic levels of certainty or randomness. © 2011 Wiley Periodicals, Inc. Complexity, 2011  相似文献   

2.
We consider a time-dependent Schrödinger equation in which the spatial variable runs over a metric graph. The boundary conditions at the vertices of the graph imply the continuity of the function and the zero sum of the one-sided derivatives taken with some weights. In the semiclassical approximation, we describe a propagation of Gaussian packets on the graph that are localized at a point at the initial instant of time. The main focus is placed on the statistics of the behavior of asymptotic solutions as time increases. We show that the calculation of the number of quantum packets on a graph is related to the well-known number-theoretic problem of finding the number of integer points in an expanding simplex. We prove that the number of Gaussian packets on a finite compact graph grows polynomially. Several examples are considered. In a particular case, Gaussian packets are shown to be distributed on a graph uniformly with respect to the edge travel times.  相似文献   

3.
The exact weighted independent set (EWIS) problem consists in determining whether a given vertex-weighted graph contains an independent set of given weight. This problem is a generalization of two well-known problems, the NP-complete subset sum problem and the strongly NP-hard maximum weight independent set (MWIS) problem. Since the MWIS problem is polynomially solvable for some special graph classes, it is interesting to determine the complexity of this more general EWIS problem for such graph classes.We focus on the class of perfect graphs, which is one of the most general graph classes where the MWIS problem can be solved in polynomial time. It turns out that for certain subclasses of perfect graphs, the EWIS problem is solvable in pseudo-polynomial time, while on some others it remains strongly NP-complete. In particular, we show that the EWIS problem is strongly NP-complete for bipartite graphs of maximum degree three, but solvable in pseudo-polynomial time for cographs, interval graphs and chordal graphs, as well as for some other related graph classes.  相似文献   

4.
帅天平  胡晓东 《应用数学》2005,18(3):411-416
本文讨论了一类在线变尺寸装箱问题,假定箱子的尺寸可以是不同的.箱子是在线到达的,仅当箱子到达后其尺寸才知道.给定一个带有核元的物品表及其上的核元关系图.我们的目标是要将表中元素装入到达的箱子中,保证任何箱子所装物品不互为核元,即所装物品对应的点所导出的子图是个空图,并使得所用的箱子总长最小.我们证明了该问题是NPHard的,并给出了基于图的点染色、图的团分解和基于背包问题的近似算法,给出了算法的时间复杂度和性能界.  相似文献   

5.
A simple, finite graph G is called a time graph (equivalently, an indifference graph) if there is an injective real function f on the vertices v(G) such that vivje(G) for vivj if and only if |f(vi) ? f(vj)| ≤ 1. A clique of a graph G is a maximal complete subgraph of G. The clique graph K(G) of a graph G is the intersection graph of the cliques of G. It will be shown that the clique graph of a time graph is a time graph, and that every time graph is the clique graph of some time graph. Denote the clique graph of a clique graph of G by K2(G), and inductively, denote K(Km?1(G)) by Km(G). Define the index indx(G) of a connected time graph G as the smallest integer n such that Kn(G) is the trivial graph. It will be shown that the index of a time graph is equal to its diameter. Finally, bounds on the diameter of a time graph will be derived.  相似文献   

6.
We present a new representation of a chordal graph called the clique-separator graph, whose nodes are the maximal cliques and minimal vertex separators of the graph. We present structural properties of the clique-separator graph and additional properties when the chordal graph is an interval graph, proper interval graph, or split graph. We also characterize proper interval graphs and split graphs in terms of the clique-separator graph. We present an algorithm that constructs the clique-separator graph of a chordal graph in O(n3) time and of an interval graph in O(n2) time, where n is the number of vertices in the graph.  相似文献   

7.
The subgraph homeomorphism problem is to decide if there is an injective mapping of the vertices of a pattern graph into vertices of a host graph so that the edges of the pattern graph can be mapped into (internally) vertex-disjoint paths in the host graph. The restriction of subgraph homeomorphism where an injective mapping of the vertices of the pattern graph into vertices of the host graph is already given in the input instance is termed fixed-vertex subgraph homeomorphism.We show that fixed-vertex subgraph homeomorphism for a pattern graph on p vertices and a host graph on n vertices can be solved in time 2npnO(1) or in time 3npnO(1) and polynomial space. In effect, we obtain new non-trivial upper bounds on the time complexity of the problem of finding k vertex-disjoint paths and general subgraph homeomorphism.  相似文献   

8.
We study Maker‐Breaker games played on the edge set of a random graph. Specifically, we analyze the moment a typical random graph process first becomes a Maker's win in a game in which Maker's goal is to build a graph which admits some monotone increasing property \begin{align*}\mathcal{P}\end{align*}. We focus on three natural target properties for Maker's graph, namely being k ‐vertex‐connected, admitting a perfect matching, and being Hamiltonian. We prove the following optimal hitting time results: with high probability Maker wins the k ‐vertex connectivity game exactly at the time the random graph process first reaches minimum degree 2k; with high probability Maker wins the perfect matching game exactly at the time the random graph process first reaches minimum degree 2; with high probability Maker wins the Hamiltonicity game exactly at the time the random graph process first reaches minimum degree 4. The latter two statements settle conjectures of Stojakovi? and Szabó. We also prove generalizations of the latter two results; these generalizations partially strengthen some known results in the theory of random graphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

9.
When homogeneous sensors are deployed into a three-dimensional space instead of a plane, the mathematical model for the sensor network is a unit ball graph instead of a unit disk graph. It is known that for the minimum connected dominating set in unit disk graph, there is a polynomial time approximation scheme (PTAS). However, that construction cannot be extended to obtain a PTAS for unit ball graph. In this paper, we will introduce a new construction, which gives not only a PTAS for the minimum connected dominating set in unit ball graph, but also improves running time of PTAS for unit disk graph.  相似文献   

10.
We study the problem of finding an acyclic orientation of an undirected graph, such that each (oriented) path is covered by a limited number k of maximal cliques. This is equivalent to finding a k-approximate solution for the interval coloring problem on a graph. We focus our attention on claw-free chordal graphs, and show how to find an orientation of such a graph in linear time, which guarantees that each path is covered by at most two maximal cliques. This extends previous published results on other graph classes where stronger assumptions were made.  相似文献   

11.
Broadcasting is the process of information dissemination in a communication network in which a message, originated by one member, is transmitted to all members of the network. A broadcast graph is a graph which permits broadcasting from any originator in minimum time. The broadcast function B(n) is the minimum number of edges in any broadcast graph on n vertices. In this paper, we construct a broadcast graph on 26 vertices with 42 edges to prove B(26) = 42.  相似文献   

12.
Toughness, hamiltonicity and split graphs   总被引:2,自引:0,他引:2  
Related to Chvátal's famous conjecture stating that every 2-tough graph is hamiltonian, we study the relation of toughness and hamiltonicity on special classes of graphs.

First, we consider properties of graph classes related to hamiltonicity, traceability and toughness concepts and display some algorithmic consequences. Furthermore, we present a polynomial time algorithm deciding whether the toughness of a given split graph is less than one and show that deciding whether the toughness of a bipartite graph is exactly one is coNP-complete.

We show that every split graph is hamiltonian and that there is a sequence of non-hamiltonian split graphs with toughness converging to .  相似文献   


13.
We present a deterministic algorithm to compute the Reeb graph of a PL real-valued function on a simplicial complex in $O(m \log {m})$ O ( m log m ) time, where $m$ m is the size of the 2-skeleton. The problem can be solved using dynamic graph connectivity. We obtain the running time by using offline graph connectivity which assumes that the deletion time of every arc inserted is known at the time of insertion. The algorithm is implemented and experimental results are given. In addition, we reduce the offline graph connectivity problem to computing the Reeb graph.  相似文献   

14.
One considers a bounded geometry non-compact Riemannian manifold, and the graph obtained by discretizing this manifold. One shows that the uniform decay for large time of the heat kernel on the manifold and the decay of the standard random walk on the graph are the same, in the polynomial scale. As a consequence, such a large time behaviour of the heat kernel is invariant under rough isometries.   相似文献   

15.
This paper presents a method of constructing a mixed graph which can be used to analyze the causality for multivariate time series. We construct a partial correlation graph at first which is an undirected graph. For every undirected edge in the partial correlation graph, the measures of linear feedback between two time series can help us decide its direction, then we obtain the mixed graph. Using this method, we construct a mixed graph for futures sugar prices in Zhengzhou (ZF), spot sugar prices in Zhengzhou (ZS) and futures sugar prices in New York (NF). The result shows that there is a bi-directional causality between ZF and ZS, an unidirectional causality from NF to ZF, but no causality between NF and ZS.  相似文献   

16.
An edge-colored directed graph is observable if an agent that moves along its edges from node to node is able to determine his position in the graph after a sufficiently long observation of the edge colors, and without accessing any information about the traversed nodes. When the agent is able to determine his position only from time to time, the graph is said to be partly observable. Observability in graphs is desirable in situations where autonomous agents are moving on a network and they want to localize themselves with limited information. In this paper, we completely characterize observable and partly observable graphs and show how these concepts relate to other concepts in the literature. Based on these characterizations, we provide polynomial time algorithms to decide observability, to decide partial observability, and to compute the minimal number of observations necessary for finding the position of an agent. In particular we prove that in the worst case this minimal number of observations increases quadratically with the number of nodes in the graph. We then consider the more difficult question of assigning colors to a graph so as to make it observable and we prove that two different versions of this problem are NP-complete.  相似文献   

17.
Abstract. We describe a set of necessary conditions for a given graph to be the visibility graph of a simple polygon. For every graph satisfying these conditions we show that a uniform rank 3 oriented matroid can be constructed in polynomial time, which if affinely coordinatizable yields a simple polygon whose visibility graph is isomorphic to the given graph.  相似文献   

18.
Given a graph H, a random maximal H‐free graph is constructed by the following random greedy process. First assign to each edge of the complete graph on n vertices a birthtime which is uniformly distributed in [0, 1]. At time p=0 start with the empty graph and increase p gradually. Each time a new edge is born, it is included in the graph if this does not create a copy of H. The question is then how many edges such a graph will have when p=1. Here we give asymptotically almost sure bounds on the number of edges if H is a strictly 2‐balanced graph, which includes the case when H is a complete graph or a cycle. Furthermore, we prove the existence of graphs with girth greater than 𝓁 and chromatic number n*y1/(𝓁‐1)+o(1), which improves on previous bounds for 𝓁>3. ©2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 61–82, 2001  相似文献   

19.
We generalize the linear-time shortest-paths algorithm for planar graphs with nonnegative edge-weights of Henzinger et al. (1994) to work for any proper minor-closed class of graphs. We argue that their algorithm can not be adapted by standard methods to all proper minor-closed classes. By using recent deep results in graph minor theory, we show how to construct an appropriate recursive division in linear time for any graph excluding a fixed minor and how to transform the graph and its division afterwards, so that it has maximum degree three. Based on such a division, the original framework of Henzinger et al. can be applied. Afterwards, we show that using this algorithm, one can implement Mehlhorn’s (1988) 2-approximation algorithm for the Steiner tree problem in linear time on these graph classes.  相似文献   

20.
In the continuum, close connections exist between mean curvature flow, the Allen-Cahn (AC) partial differential equation, and the Merriman-Bence-Osher (MBO) threshold dynamics scheme. Graph analogues of these processes have recently seen a rise in popularity as relaxations of NP-complete combinatorial problems, which demands deeper theoretical underpinnings of the graph processes. The aim of this paper is to introduce these graph processes in the light of their continuum counterparts, provide some background, prove the first results connecting them, illustrate these processes with examples and identify open questions for future study. We derive a graph curvature from the graph cut function, the natural graph counterpart of total variation (perimeter). This derivation and the resulting curvature definition differ from those in earlier literature, where the continuum mean curvature is simply discretized, and bears many similarities to the continuum nonlocal curvature or nonlocal means formulation. This new graph curvature is not only relevant for graph MBO dynamics, but also appears in the variational formulation of a discrete time graph mean curvature flow. We prove estimates showing that the dynamics are trivial for both MBO and AC evolutions if the parameters (the time-step and diffuse interface scale, respectively) are sufficiently small (a phenomenon known as “freezing” or “pinning”) and also that the dynamics for MBO are nontrivial if the time step is large enough. These bounds are in terms of graph quantities such as the spectrum of the graph Laplacian and the graph curvature. Adapting a Lyapunov functional for the continuum MBO scheme to graphs, we prove that the graph MBO scheme converges to a stationary state in a finite number of iterations. Variations on this scheme have recently become popular in the literature as ways to minimize (continuum) nonlocal total variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号