首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report herein the mechanism of the photochemical ligand substitution reactions of a series of fac-[Re(X(2)bpy)(CO)(3)(PR(3))](+) complexes (1) and the properties of their triplet ligand-field ((3)LF) excited states. The reason for the photostability of the rhenium complexes [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) was also investigated. Irradiation of an acetonitrile solution of 1 selectively gave the biscarbonyl complexes cis,trans-[Re(X(2)bpy)(CO)(2)(PR(3))(CH(3)CN)](+) (2). Isotope experiments clearly showed that the CO ligand trans to the PR(3) ligand was selectively substituted. The photochemical reactions proceeded via a dissociative mechanism from the (3)LF excited state. The thermodynamical data for the (3)LF excited states of complexes 1 and the corrective nonradiative decay rate constants for the triplet metal-to-ligand charge-transfer ((3)MLCT) states were obtained from temperature-dependence data for the emission lifetimes and for the quantum yields of the photochemical reactions and the emission. Comparison of 1 with [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) indicated that the (3)LF states of some 3- and 4-type complexes are probably accessible from the (3)MLCT state even at ambient temperature, but these complexes were stable to irradiation at 365 nm. The photostability of 3 and 4, in contrast to 1, can be explained by differences in the trans effects of the PR(3), py, and Cl(-) ligands.  相似文献   

2.
Rhenium(I) polypyridyl complexes have been designed for the intramolecular photogeneration of tyrosyl radical. Tyrosine (Y) and phenylalanine (F) have each been separately appended to a conventional Re(I)(bpy)(CO)(3)CN framework via an amide linkage to the bipyridine (bpy) ligand. Comparative time-resolved emission quenching and transient absorption spectra of Re(bpy-Y)(CO)(3)CN and Re(bpy-F)(CO)(3)CN show that Y is oxidized only upon its deprotonation at pH 12. In an effort to redirect electron transport so that it is more compatible with intramolecular Y oxidation, polypyridyl Re(I) complexes have been prepared with the amide bond functionality located on a pendant phosphine ligand. A [Re(phen)(PP-Bn)(CO)(2)](PF(6)) (PP = bis(diphenylphosphino)ethylene) complex has been synthesized and crystallographically characterized. Electrochemistry and phosphorescence measurements of this complex indicate a modest excited-state potential for tyrosine oxidation, similar to that for the (bpy)Re(I)(CO)(3)CN framework. The excited-state oxidation potential can be increased by introducing a monodentate phosphine to the Re(I)(NN)(CO)(3)(+) framework (NN = polypyridyl). In this case, Y is oxidized at all pHs when appended to the triphenylphosphine (P) of [Re(phen)(P-Y)(CO(3))](PF(6)). Analysis of the pH dependence of the rate constant for tyrosyl radical generation is consistent with a proton-coupled electron transfer (PCET) quenching mechanism.  相似文献   

3.
Systematic synthesis routes have been developed for the linear-shaped rhenium(I) oligomers and polymers bridged with bidentate phosphorus ligands, [Re(N--N)(CO)3-PP-{Re(N--N)(CO)2-PP-}(n)Re(N--N)(CO)3](PF6)(n+2) (N--N = diimine, PP = bidentate phosphine, n = 0-18). These were isolated by size exclusion chromatography (SEC) and identified by (1)H NMR, IR, electrospray ionization Fourier transform mass spectrometry, analytical SEC, and elemental analysis. Crystal structures of [Re(bpy)(CO)3-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)3](PF6)2, [Re(bpy)(CO)3-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)2-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)3](PF6)3 and [Re(bpy)(CO)3-Ph2PC2H4PPh2-{Re(bpy)(CO)2Ph2PC2H4PPh2-}(n)Re(bpy)(CO)3](PF6)(n+2) (bpy = 2,2'-bipyridine, n = 1, 2) were obtained, showing that they have interligand pi-pi interaction between the bpy ligand and the phenyl groups on the phosphorus ligand. All of the oligomers and polymers synthesized were emissive at room temperature in solution. For the dimers, broad emission was observed with a maximum at 523-545 nm, from the (3)MLCT excited-state of the tricarbonyl complex unit, [Re(N--N)(CO)3-PP-]. Emission from the longer oligomers and polymers with > or = 3 Re(I) units was observed at wavelengths 50-60 nm longer than those of the corresponding dimers. This fact and the emission decay results clearly show that energy transfer from the edge unit to the interior unit occurs with a rate constant of (0.9 x 10(8))-(2.5 x 10(8)) s(-1). The efficient energy transfer and the smaller exclusive volume of the longer Re(I) polymers indicated intermolecular aggregation for these polymers in an MeCN solution.  相似文献   

4.
The chloro and pyridinate derivatives of rhenium(I) tricarbonyl complexes containing the diimine ligands 2,2'-bipyrazine (bpz) and 5,5'-dimethyl-2,2'-bipyrazine (Me2bpz) are reported. Absorption maxima occur in the visible and ultraviolet regions of the spectrum; emission is structureless at room temperature and at 77 K; the infrared spectrum consists of three carbonyl stretches; electrochemically, a reversible reduction, an irreversible reduction, and an irreversible oxidation take place. Some ring protons are shielded and others deshielded in the presence of the methyl substituents attached to the bpz ring. DFT and TDDFT calculations provide insight into interpreting electronic and vibrational properties of the complexes. When compared to similar rhenium(I) tricarbonyl complexes of 2,2'-bipyridine (bpy) and 2,2'-bipyrimidine (bpm), the Me2bpz complexes are comparable to bpm derivatives and their properties are intermediate between those of bpy and bpz complexes.  相似文献   

5.
The photophysics and photochemistry of the salt [(bpy)Re(CO)(3)(py)(+)][BzBPh(3)(-)] (ReBo, where bpy = 2,2'-bipyridine, py = pyridine, Bz = C(6)H(5)CH(2) and Ph = C(6)H(5)) has been investigated in THF and CH(3)CN solutions. UV-visible absorption and steady-state emission spectroscopy indicates that in THF ReBo exists primairly as an ion-pair. A weak absorption band is observed for the salt in THF solution that is assigned to an optical ion-pair charge transfer transition. Stern-Volmer emission quenching studies indicate that BzBPh(3)(-) quenches the luminescent dpi (Re) --> pi (bpy) metal-to-ligand charge transfer excited state of the (bpy)Re(CO)(3)(py)(+) chromophore. The quenching is attributed to electron transfer from the benzylborate anion to the photoexcited Re(I) complex, (bpy(-)(*))Re(II)(CO)(3)(py)(+) + BzBPh(3)(-) --> (bpy(-)(*))Re(I)(CO)(3)(py) + BzBPh(3)(*). Laser flash photolysis studies reveal that electron transfer quenching leads to irreversible reduction of the Re(I) cation to (bpy(-)(*))Re(I)(CO)(3)(py). Photoinduced electron transfer is irreversible owing to rapid C-B bond fragmentation in the benzylboranyl radical, PhCH(2)BPh(3)(*) --> PhCH(2)(*) + BPh(3)(*). Quantitative laser flash photolysis experiments show that the quantum efficiency for production of the reduced complex (bpy(-)(*))Re(I)(CO)(3)(py) is unity, suggesting that C-B bond fragmentation in the benzylboranyl radical occurs more rapidly than return electron transfer within the geminate radical pair that is formed by photoinduced electron transfer.  相似文献   

6.
Excitation by high-energy light, such as that of 313 nm wavelength, induces a photochemical ligand substitution (PLS) reaction of fac-[Re(bpy)(CO)3Cl] (1a) to give the solvento complexes (OC-6-34)- and (OC-6-44)-[Re(bpy)(CO)2(MeCN)Cl] (2 and 3) in good yields. The disappearance quantum yield of 1a was 0.01+/-0.001 at 313 nm. The products were isolated, and X-ray crystallographic analysis was successfully performed for 2. Time-resolved IR measurements clearly indicated that the CO ligand dissociates with subpicosecond rates after excitation, leading to vibrationally hot photoproducts, which relax within 50-100 ps. Detailed studies of the reaction mechanism show that the PLS reaction of 1a does not proceed via the lowest vibrational level in the 3MLCT excited state. The PLS reaction gives 2 and (OC-6-24)-[Re(bpy)(CO)2(MeCN)Cl] (5) as primary products, and one of the products, 5, isomerizes to 3. This type of PLS reaction is more general, occurring in various fac-rhenium(I) diimine tricarbonyl complexes such as fac-[Re(X2bpy)(CO)3Cl] (X2bpy=4,4'-X2-bpy; X=MeO, NH2, CF3), fac-[Re(bpy)(CO)3(pyridine)]+, and fac-[Re(bpy)(CO)3(MeCN)]+. The stable photoproducts (OC-6-44)- and (OC-6-43)-[Re(bpy)(CO)2(MeCN)(pyridine)]+ and (OC-6-32)- and (OC-6-33)-[Re(bpy)(CO)2(MeCN)2]+ were isolated. The PLS reaction of rhenium tricarbonyl-diimine complexes is therefore applicable as a general synthetic method for novel dicarbonyls.  相似文献   

7.
Rhenium(I) bipyridyl complexes1 could be used as photosensitizers in the dye-sensitized nanocrystalline photovoltaic solar cells2 due to their high stability and intense metal-to-ligand charge transfer transitions. The Re(II/I) oxidation potentials are significantly positive which could not only provide a larger driving force than the ruthenium(II) bipyridyl complexes, such as N3 dyes3, for interfacial charge recombination, but also result in serious backward electron transfer and reduce the…  相似文献   

8.
Both manganese and rhenium complexes of the type [M(bipy)(CO)(3)(N-RIm)](+) (bipy=2,2'-bipyridine) undergo deprotonation of the central CH group of the N-alkylimidazole (N-RIm) ligand when treated with a strong base. However, the outcome of the reaction is very different for either metal. For Mn, the addition of the equimolar amount of an acid to the product of the deprotonation affords an N-heterocyclic carbene (NHC) complex, whereas for Re, once the deprotonation of the central imidazole CH group has occurred, the bipy ligand undergoes a nucleophilic attack on an ortho carbon, affording the C-C coupling product. The extension of these studies to pseudo-octahedral [Mo(η(3)-allyl)(bipy)(CO)(2)(N-RIm)](+) complexes has allowed us to isolate cationic NHC complexes (Mn(I)-type behavior), as well as their neutral imidazol-2-yl precursors. Theoretical studies of the reaction mechanisms using DFT computations were carried out on the deprotonation of [Mn(bipy)(CO)(3)(N-PhIm)](+), [Re(bipy)(CO)(3) (N-MesIm)](+), and [Mo(η(3)-C(4)H(7))(bipy)(CO)(2) (N-MesIm)](+) complexes (Mes=mesityl) at the B3LYP/6-31G(d) (LANL2DZ for Mn, Re, and Mo) level of theory. Our results explain why different products have been found experimentally for Mn, Mo, and Re complexes. For Re, the process leading to a C-C coupling product is clearly more favored than those forming an imidazol-2-yl product. In contrast, for Mn and Mo complexes, the lower stabilizing interaction between the central imidazole and ortho bipy C atoms, along with the higher lability of the ligands, make the formation of an NHC-type product kinetically more accessible, in good agreement with experimental findings.  相似文献   

9.
The reaction mechanism of photocatalytic CO2 reduction using rhenium(I) complexes has been investigated by means of a detailed comparison of the photocatalyses of three rhenium(I) complexes, fac-[Re(bpy)(CO)3L] (L = SCN- (1-NCS), Cl- (1-Cl), and CN- (1-CN)). The corresponding one-electron-reduced species (OER) of the complexes play two important roles in the reaction: (a) capturing CO2 after loss of the monodentate ligand (L) and (b) donation of the second electron to CO2 by another OER without loss of L. In the case of 1-NCS, the corresponding OER has both of the capabilities in the photocatalytic reaction, resulting in more efficient CO formation (with a quantum yield of 0.30) than that of 1-Cl (quantum yield of 0.16), for which OER species have too short a lifetime to accumulate during the photocatalytic reaction. On the other hand, 1-CN showed no photocatalytic ability, because the corresponding OER species does not dissociate the CN- ligand. Based on this mechanistic information, the most efficient photocatalytic system was successfully developed using a mixed system with fac-[Re(bpy)(CO)3(CH3CN)]+ and fac-[Re{4,4'-(MeO)2bpy}(CO)3{P(OEt)3}]+, for which the optimized quantum yield for CO formation was 0.59.  相似文献   

10.
The reaction of rhenium (VII) trioxo complexes containing the ligand sets scorpionate, [HB(pz)3]ReO3 (6), [Ph-B(pz)3]ReO3 (7), and [[HC(pz)3]ReO3][ReO4] (8) and pyridine/pyridine-type ligands [(4,7-diphenyl-1,10-phen)(Br)ReO3] (12), [(4,4'-di-tert-butyl-2,2'-dipyridyl)(Cl)ReO3] (13), and [(py)2Re(Cl)O3] (4), with diphenyl ketene, has led to the isolation of six novel [3 + 2] cycloaddition products. These air-stable solids 9-11 and 15-17 are the result of [3 + 2] addition of the O=Re=O motif across the ketene C=C double bond. Five of the six [3 + 2] cycloaddition products have been structurally characterized by single-crystal X-ray diffraction and in all cases by 13C NMR and IR spectroscopies.  相似文献   

11.
UV-vis absorption and picosecond time-resolved IR (TRIR) spectra of amido and phosphido complexes fac-[Re(ER2)(CO)3(bpy)] (ER2 = NHPh, NTol2, PPh2, bpy = 2,2'-bipyridine, Tol = 4-methylphenyl) were investigated in conjunction with DFT and TD-DFT calculations in order to understand their ground-state electronic structure, low-lying electronic transitions and excited-state character and dynamics. The HOMO is localized at the amido/phosphido ligand. Amide and phosphide ligands are sigma-bonded to Re, the pi interaction being negligible. Absorption spectra show a weak band at low energies (1.7-2.1 eV) that arises from essentially pure ER(2) --> bpy ligand-to-ligand charge transfer (LLCT). The lowest excited state is the corresponding triplet, (3)LLCT. Low triplet energies and large distortions diminish the excited-state lifetimes to 85 and 270 ps for NHPh and NTol(2), respectively, and to ca. 30 ps for PPh2. nu(CO) vibrations undergo only very small ( bpy MLCT character, is a unique feature of the amido/phoshido complexes, whose lowest excited state can be viewed as containing a highly unusual aminyl/phosphinyl radical-cationic ligand. For comparison, the amino and phosphino complexes fac-[Re(NHPh(2))(CO)3(bpy)]+ and fac-[Re(PPh3)(CO)3(bpy)]+ are shown to have the usual Re --> bpy (3)MLCT lowest excited states, characterized by upshifted nu(CO) bands.  相似文献   

12.
Novel polynuclear complexes of rhenium and ruthenium containing PCA (PCA = 4-pyridinecarboxaldehyde azine or 4-pyridinealdazine or 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) as a bridging ligand have been synthesized as PF(6-) salts and characterized by spectroscopic, electrochemical, and photophysical techniques. The precursor mononuclear complex, of formula [Re(Me(2)bpy)(CO)(3)(PCA)](+) (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), does not emit at room temperature in CH(3)CN, and the transient spectrum found by flash photolysis at lambda(exc) = 355 nm can be assigned to a MLCT (metal-to-ligand charge transfer) excited state [(Me(2)bpy)(CO)(3)Re(II)(PCA(-))](+), with lambda(max) = 460 nm and tau < 10 ns. The spectral properties of the related complexes [[Re(Me(2)bpy)(CO)(3)}(2)(PCA)](2+), [Re(CO)(3)(PCA)(2)Cl], and [Re(CO)(3)Cl](3)(PCA)(4) confirm the existence of this low-energy MLCT state. The dinuclear complex, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(II)(NH(3))(5)](3+), presents an intense absorption in the visible spectrum that can be assigned to a MLCT d(pi)(Ru) --> pi(PCA); in CH(3)CN, the value of lambda (max) = 560 nm is intermediate between those determined for [Ru(NH(3))(5)(PCA)](2+) (lambda(max) = 536 nm) and [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](4+) (lambda(max) = 574 nm), indicating a significant decrease in the energy of the pi-orbital of PCA. The mixed-valent species, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(III)(NH(3))(5)](4+), was obtained in CH(3)CN solution, by bromine oxidation or by controlled-potential electrolysis at 0.8 V in a OTTLE cell of the [Re(I),Ru(II)] precursor; the band at lambda(max) = 560 nm disappears completely, and a new band appears at lambda(max) = 483 nm, assignable to a MMCT band (metal-to-metal charge transfer) Re(I) --> Ru(III). By using the Marcus-Hush formalism, both the electronic coupling (H(AB)) and the reorganization energy (lambda) for the metal-to-metal intramolecular electron transfer have been calculated. Despite the considerable distance between both metal centers (approximately 15.0 Angstroms), there is a moderate coupling that, together with the comproportionation constant of the mixed-valent species [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](5+) (K(c) approximately 10(2), in CH(3)CN), puts into evidence an unusual enhancement of the metal-metal coupling in the bridged PCA complexes. This effect can be accounted for by the large extent of "metal-ligand interface", as shown by DFT calculations on free PCA. Moreover, lambda is lower than the driving force -DeltaG degrees for the recombination charge reaction [Re(II),Ru(II)] --> [Re(I),Ru(III)] that follows light excitation of the mixed-valent species. It is then predicted that this reverse reaction falls in the Marcus inverted region, making the heterodinuclear [Re(I),Ru(III)] complex a promising model for controlling the efficiency of charge-separation processes.  相似文献   

13.
Two water soluble Re(i) tricarbonyl diimine complexes containing cationic 2,2'-bipyridyl ligands [Re(L1)(CO)(3)(AN)](2+) (1) and [Re(L2)(CO)(3)(AN)](3+) (2) (L1 and L2: a cationic 2,2'-bipyridyl ligand, AN: acetonitrile) were synthesized and characterized. Their photophysical, electrochemical and electrochemiluminescent properties were investigated. The crystal structures of the two complexes have also been determined. Electrochemiluminescence (ECL) of the two complexes 1 and 2 have been studied in aqueous buffer solution in the presence of co-reactant tri-n-propylamine (TPrA) or 2-(dibutylamino)ethanol (DBAE) at a Au working electrode. The ECL behavior of the complexes was also studied in the presence of several surfactants such as Triton X-100 and Zonyl FSN. The ECL signals of the rhenium(i) complex were enhanced about 190-fold and 70-fold at a Au electrode in the presence of Triton X-100 for the [Re(L1)(CO)(3)(AN)](2+)/TPrA and [Re(L1)(CO)(3)(AN)](2+)/DBAE systems, respectively.  相似文献   

14.
Copper(I) and rhenium(I) complexes [Cu(PPh(3))(2)(dppz-11-COOEt)]BF(4), [Cu(PPh(3))(2)(dppz-11-Br)]BF(4), [Re(CO)(3)Cl(dppz-11-COOEt)] and [Re(CO)(3)Cl(dppz-11-Br)] (dppz-11-COOEt = dipyrido-[3,2a:2',3'c]phenazine-11-carboxylic ethyl ester, dppz-11-Br = 11-bromo-dipyrido[3,2a:2',3'c]-phenazine) have been studied using Raman, resonance Raman, and transient resonance Raman (TR(2)) spectroscopy, in conjunction with computational chemistry. DFT (B3LYP) frequency calculations with a 6-31G(d) basis set for the ligands and copper(I) centers and an effective core potential (LANL2DZ) for rhenium in the rhenium(I) complexes show close agreement with the experimental nonresonance Raman spectra. Modes that are phenazine-based, phenanthroline-based, and delocalized across the entire ligand structure were identified. The nature of the absorbing chromophores at 356 nm for ligands and complexes was established using resonance Raman spectroscopy in concert with vibrational assignments from calculations. This analysis reveals that the dominant chromophore for the complexes measured at 356 nm is ligand-centered (LC), except for [Re(CO)(3)Cl(dppz-11-Br)], which appears to have additional chromophores at this wavelength. Calculations on the reduced complexes, undertaken to model the metal-to-ligand charge transfer (MLCT) excited state, show that the reducing electron occupies a ligand MO that is delocalized across the ligand structure. Resonance Raman spectra (lambda(exc) = 514.5 nm) of the reduced rhenium complexes show a similar spectral pattern to that observed in [Re(CO)(3)Cl(dppz)](*-); the measured bands are therefore attributed to ligand radical anion modes. These bands lie at 1583-1593 cm(-1) for [Re(CO)(3)Cl(dppz-11-COOEt)] and 1611 cm(-1) for [Re(CO)(3)Cl(dppz-11-Br)]. The thermally equilibrated excited states are examined using nanosecond-TR(2) spectroscopy (lambda(exc) = 354.7 nm). The TR(2) spectra of the ligands provide spectral signatures for the (3)LC state. A band at 1382 cm(-1) is identified as a marker for the (3)LC states of both ligands. TR(2) spectra of the copper and rhenium complexes of dppz-11-Br show this (3)LC band, but it is not prominent in the spectra of [Cu(PPh(3))(2)(dppz-11-COOEt)](+) and [Re(CO)(3)Cl(dppz-11-COOEt)]. Calculations suggest that the lowest triplet states of both of the rhenium(I) complexes and [Cu(PPh(3))(2)(dppz-11-Br)](+) are metal-to-ligand charge transfer in nature, but the lowest triplet state of [Cu(PPh(3))(2)(dppz-11-COOEt)](+) appears to be LC in character.  相似文献   

15.
Re(I) carbonyl-diimine complexes [Re(L-AA)(CO)(3)(N,N)](+) (N,N = bpy, phen) containing an aromatic amino acid (AA), phenylalanine (Phe), tyrosine (Tyr), or tryptophan (Trp), linked to Re by a pyridine-amido or imidazole-amido ligand L have been synthesized and their excited-state properties investigated by nanosecond time-resolved IR (TRIR) and emission spectroscopy. Near-UV optical excitation populates a Re(I)(CO)(3)→N,N (3)MLCT excited state *[Re(II)(L-AA)(CO)(3)(N,N(?-))](+). Decay to the ground state (50-300 ns lifetime) is the only excited-state deactivation process observed in the case of Phe and Tyr complexes, whereas the Trp-containing species undergo a Trp(indole)→*Re(II) electron transfer (ET) producing a charge-separated (CS) state, [Re(I)(L-Trp(?+))(CO)(3)(N,N(?-))](+). The ET occurs with a 8-40 ns lifetime depending on L, N,N, and the solvent. The CS state is characterized by ν(CO) IR bands shifted to lower wavenumbers from their respective ground-state positions and two bands at 1278 and 1497 cm(-1) tentatively attributed to Trp(?+). The amido bridge is affected by both the MLCT excitation and the subsequent ET, manifested by the shifts and intensity changes of the amide-I IR band at about 1680 cm(-1). The CS state decays to the ground state by a N,N(?-)→Trp(?+) back-ET the rates of which are comparable to those of the forward ET, 30-60 ns. This study independently demonstrates that Trp can act as an electron-hopping intermediate in photodriven ET systems based on Re-labeled proteins and supramolecules. Photoinduced ET in Trp-containing Re complexes also can be used to generate Trp(?+) and investigate its spectral properties and reactivity.  相似文献   

16.
Intramolecular pi-pi and CH-pi interactions between the bpy and PR3 ligands of fac-[Re(bpy)(CO)3(PR3)]+ affect their structure, and electrochemical and spectroscopic properties. Intramolecular CH-pi interaction was observed between the alkyl groups on the phosphine ligand (R =nBu, Et) and the bpy ligand, and intramolecular pi-pi and CH-pi interactions were both observed between the aryl group(s) on the phosphorus ligand (R =p-MeOPh, p-MePh, Ph, p-FPh, OPh) and the bpy ligand, while no such interactions were found in the trialkylphosphite complexes (R = OiPr, OEt, OMe). The intramolecular interactions distort the pyridine rings of the bpy ligand as long as 3.7 x 10(-2)A in crystals. Molecular orbital calculations of the bpy ligand suggest that this distortion decreases the energy gap between its pi and pi* orbitals. An absorption band attributed to the pi-pi*(bpy) transition of the distorted rhenium complexes, measured in a KBr pellet, was red-shifted by 1-5 nm compared to the complexes without the distorted bpy ligand. Even in solution, similar red shifts of the pi-pi*(bpy) absorption were observed. The redox potential E1/2(bpy/bpy*-) of the complexes with the trialkylphosphine and triarylphosphine ligand are shifted positively by 110-120 mV and 60-80 mV respectively, compared with those derived from the electron-attracting property of the phosphorus ligand. In contrast with these properties, three nu(CO) IR bands, which are sensitive to the electron density on the central rhenium because of pi-back bonding, were shifted to higher energy, and a Re(I/II)-based oxidation wave was observed at a more positive potential according to the electron-attracting property of the phosphorus ligand.  相似文献   

17.
The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (3)MLCT. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi orbital upon excitation are evident by the upward shift of nu(CO) vibrations and a downward shift of the ketone nu(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (3)MLCT excited state is indicated by time-resolved visible and resonance Raman (TR(3)) spectra that show features typical of bopy(*)(-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (3)MLCT excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of nu(C(triple bond)O) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)]PF(6).CH(3)CN has been determined.  相似文献   

18.
The radical complex {(mu(4)-TCNQF4)[Re(CO)(3)(bpy)](4)}(PF(6))(3), as prepared and isolated from the reaction between TCNQF4 and [Re(CO)(3)(bpy)(MeOH)](PF(6)), was studied electrochemically and by IR vibrational spectroscopy, UV-Vis-NIR absorption spectroscopy, and by EPR at 9.5, 190 and 285 GHz. The isotropic g factor of 2.0058, the detectable g anisotropy, and the (185,187)Re EPR hyperfine coupling of 0.95 mT for four equivalent metal nuclei support predominant, but not exclusive, spin localisation at the bridging ligand. Nitrile and metal carbonyl stretching frequencies as well as the typically structured near infrared absorption band lend further support to (TCNQF4 (-))(Re(I))(4) as the most appropriate oxidation state formulation. In comparison to the non-radical complex {(mu(4)-TCNQ)[Re(CO)(3)(bpy)](4)}(PF(6))(4) an X-ray structure analysis of {(mu(4)-TCNQF4)[Re(CO)(3)(bpy)](4)}(PF(6))(3) shows a marginally more twisted (ReNCCCNRe)(C(6)X(4))(ReNCCCNRe) configuration and a different up/down arrangement of the [Re(CO)(3)(bpy)](+) groups. This first isolation, electrochemical, structural and spectroscopic characterisation of a discrete tetranuclear radical complex of a TCNQ-type ligand suggests a link between the stability of such materials and the rather small structural changes on ligand-based electron transfer.  相似文献   

19.
The proton-coupled electron transfer (PCET) reaction between the bpz-based photoexcited (3)MLCT state of [Ru(II)(bpy)(2)(bpz)](2+) (bpy = 2,2'-bipyridine, bpz = 2,2'-bipyrazine) and a series of substituted hydroquinones (H(2)Q) has been studied by transient absorption (TA) and time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X-band. When the reaction is carried out in a CH(3)CN/H(2)O mixed solvent system with unsubstituted hydroquinone, the neutral semiquinone radical (4a) and its conjugate base, the semiquinone radical anion (4b), are both observed. Variation of the acid strength in the solvent mixture allows the acid/base dependence of the PCET reaction to be investigated. In solutions with very low acid concentrations, TREPR spectra exclusively derived from radical anion 4b are observed, while at very high acid concentrations, the spectrum is assigned to the protonated structure 4a. At intermediate acid concentrations, either a superposition of spectra is observed (slow exchange between 4a and 4b) or substantial broadening in the TREPR spectrum is observed (fast exchange between 4a and 4b). Variation of substituents on the H(2)Q ring substantially alter this acid/base dependence and provide a means to investigate electronic effects on both the ET and PT components of the PCET process. The TA results suggest a change in mechanism from PCET to direct ET quenching in strongly basic solutions and with electron withdrawing groups on the H(2)Q ring system. Changing the ligand on the Ru complex also alters the acid/base dependence of the TREPR spectra through a series of complex equilibria between protonated and deprotonated hydroquinone radicals and anions. The relative intensities of the signals from radical 4a versus 4b can be rationalized quantitatively in terms of these equilibria and the relevant pK(a) values. An observed equilibrium deuterium isotope effect supports the conclusion that the post-PCET HQ(?)/Q(?-) equilibrium is the most important in determining the 4a/4b ratio at early delay times.  相似文献   

20.
Two multifunctional photoactive complexes [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+)=N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy=2,2'-bipyridine) were synthesized, characterized, and their redox and photonic properties were investigated by cyclic voltammetry; ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions; and time-resolved resonance Raman spectroscopy. The first reduction step of either complex occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans-->cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3)-->MeDpe(+ 3)MLCT (MLCT=metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximately 42 (73 %) and approximately 430 ps (27 %). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3)-->MeDpe(+) and Re(CO)(3)-->bpy (3)MLCT states, from which a MeDpe(+) localized intraligand (3)pipi* excited state ((3)IL) is populated with lifetimes of approximately 0.6 and approximately 10 ps, respectively. The (3)IL state undergoes a approximately 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle structural variations. The complex [Re(MeDpe(+))(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号