首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared spectra (3500-50 cm(-1)) of the gas and solid and the Raman spectra (3500-50 cm(-1)) of the liquid and solid have been recorded for 1-fluoro-2-butyne, CH3-C-triple bond-C-CH2F. Equilibrium geometries and energies have been determined by ab initio and hybrid DFT methods using a number of basis sets. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on vibrational-rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of Coriolis sub-band structure in two of the degenerate methyl vibrations. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

2.
In this work, experimental and theoretical study on the molecular structure and the vibrational spectra of o-chlorotoluene (OCT), m-chlorotoluene (MCT) and p-chlorotoluene (PCT) are presented. The vibrational frequencies of these compounds were obtained theoretically by ab initio HF and DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set for optimized geometries and were compared with Fourier transform infrared (FTIR) in the region of 400-4000 cm(-1) and with Raman spectra in the region of 100-4000 cm(-1). Complete vibrational assignment, analysis and correlation of the fundamental modes for these compounds have been carried out. The vibrational harmonic frequencies were scaled using scale factors, yielding a good agreement between the experimentally recorded and the theoretically calculated values.  相似文献   

3.
The geometries and vibrational frequencies of two conformers of pyruvic acid have been obtained at the ab initio second order Möller-Plesset level of theory using the 6-311++G** basis set. While the calculated geometries have been compared to the experimental microwave data, the vibrational frequencies have been assigned, using the experimental gas phase IR spectra of 13 isotopes of pyruvic acid by a recently developed scaling procedure (IRPROG). An attempt has been made to explain the stability of the eclipsed conformation over the staggered conformation of pyruvic acid by taking account of the molecular orbitals.  相似文献   

4.
Vibrational spectral measurements, namely, infrared (4000-400 cm(-1)) and Raman (3500-50 cm(-1)) spectra have been made for 2-Bromohydroquinone. Optimized geometrical structures, harmonic vibrational frequencies and intensities have been computed by the ab initio (RHF), B-based (BLYP, BP86) and B3-based (B3P86, B3LYP, B3PW91) density functional methods using 6-31G(d) basis set. A complete assignment of the observed spectra has been proposed. Coupling of vibrations has been determined by calculating potential energy distributions (PEDs) at BP86/6-31G(d) level of theory. In the computed equilibrium geometries by all the levels, the bond lengths and bond angles show changes in the neighborhood of Bromine. Similarly, the vibrational spectra exhibit some marked spectral features unlike in hydroquinone and phenol. On the other hand, the infrared spectrum shows a clear evidence of O-H...O bonding near 3200 cm(-1) as in hydroquinone. Evaluation of the theoretical methods demonstrates that all the levels but the RHF have reproduced frequencies fairly accurately in the 2000-500 cm(-1); below 500 cm(-1) the RHF has performed reasonably well.  相似文献   

5.
The solid phase mid FTIR and FT Raman spectra of 2-naphthoic acid (NA) and 6-bromo-2-naphthoic acid (BNA) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The fundamental vibrational frequencies and intensities of the vibrational bands were evaluated using density functional theory (DFT) using standard B3LYP method and 6-311+G** basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

6.
Infrared (4000-400 cm(-1)) and Raman (3500-50 cm(-1)) spectral measurements have been made for the solid sample of 7-methyl-4-bromomethylcoumarin. Electronic structure calculations at RHF/6-31G* and B3LYP/6-31G* levels of theory have been performed, giving equilibrium geometries, harmonic vibrational spectra and normal modes. Different orientations of bromomethyl group have yielded only two conformers, of which the most stable one lying lower from the other conformer by approximately 7.99 kJ/mol, is non-planar with no symmetry. A complete assignment of the vibrational modes, aided by the calculations, has been proposed. Coupled vibrations are manifest in many modes. Some spectral features, compared to 6-methyl-4-bromomethylcoumarin, show changes across both IR and Raman spectra, involving mainly skeletal vibrations, and to a lesser degree, methyl and bromomethyl vibrations. Low-frequency vibrations below 150 cm(-1) are assigned to lattice modes.  相似文献   

7.
In the present work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of 4-chloro-7-nitrobenzofurazan (NBD-Chloride). The FT-IR (400-4000 cm(-1)) and FT-Raman spectra (50-4000 cm(-1)) of NBD-Chloride were recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of NBD-Chloride in the ground-state have been calculated by using the density functional B3LYP method with 6-311++G (d, p) as higher basis set. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) result in DMSO and CDCl3 solvents complements with each other. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculation results were applied to simulate infrared and Raman spectra of the title compound which show good agreement with observed spectra.  相似文献   

8.
The FTIR and FT-Raman spectra of 2-amino-4,6-dimethoxypyrimidine (2A46DMP) has been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2A46DMP were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

9.
In the present work, we reported a combined experimental and theoretical study on conformational stability, molecular structure and vibrational spectra of 2,4-di-tert-butylphenol (2,4-DTBP). The FT-IR (400-4000cm(-1)) and FT-Raman spectra (50-3500cm(-1)) of 2,4-DTBP were recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of 2,4-DTBP in the ground-state have been calculated by using the density functional BLYP/B3LYP methods. The energy calculated by time-dependent density functional theory (TD-DFT) result complements with the experimental findings. The calculated highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies show that charge transfer occurs within the molecule. Finally the calculation results were compared with measured infrared and Raman spectra of the title compound which showed good agreement with observed spectra.  相似文献   

10.
The FTIR and FT-Raman spectra of 2,4-dichloro-6-nitrophenol (2,4-DC6NP) has been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of (2,4-DC6NP) were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311+G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

11.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

12.
The FT-IR and FT-Raman spectra of 2,3-difluoro phenol (2,3-DFP) has been recorded in the region 4000-400 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,3-DFP were obtained by the ab initio HF and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-311+G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

13.
In the present work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and HOMO-LUMO analysis of 2-aminobenzimidazole (2-ABD). The FTIR (400-4000 cm(-1)) and FT-Raman spectra (50-3500 cm(-1)) of 2-ABD were recorded. The molecular geometry, harmonic vibrational wavenumbers and bonding features of 2-ABD in the ground-state have been calculated by using the density functional B3LYP method with 6-311++G(d,p) and 6-31G(d) as basis sets. The energy and oscillator strength were calculated by time-dependent density functional theory (TD-DFT) result complements with the experimental findings. The calculated HOMO and LUMO energies showed that charge transfer occurs within the molecule. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound which showed good agreement with the observed spectra.  相似文献   

14.
Far-infrared absorption spectra of small neutral and cationic niobium clusters containing five to nine Nb atoms have been obtained by multiple photon dissociation spectroscopy of their argon complexes. The experimental far-IR spectra are recorded in the 85-600 cm(-1) region and cover the range of the structure-specific vibrational fundamentals, i.e., the finger-print range, for these metal clusters. The experiments are accompanied by quantum chemical calculations employing the density-functional theory. A comparison of the experimental and calculated far-IR spectra allows to identify the cluster structures. Although the experimental spectra for clusters containing five, six, eight, and nine Nb atoms are very different for cationic and neutral clusters, the comparison with theory reveals that, nevertheless, the overall geometries for cations and neutrals are very similar, except for Nb(6) (0+).  相似文献   

15.
The FTRaman and FTIR spectra for Toluic acid (TA) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (LSDA and B3LYP) method BY employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (LSDA/B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for benzoic acid and some substituted benzoic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the TA are effected upon profusely with the methyl substitutions in comparison to benzoic acid and these differences are interpreted.  相似文献   

16.
The molecular vibrations of xanthine were investigated in polycrystalline sample, at room temperature by Fourier transform infrared (FTIR) and FT-Raman spectroscopies. The spectra of the molecule have been recorded in the regions 4000-50 cm(-1) and 3500-100 cm(-1), respectively. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of ab initio Hartree-Fock (HF) and density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from ab initio and DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy have been calculated for the molecule. Unambiguous vibrational assignment of all the fundamentals was made using the potential energy distribution (PED).  相似文献   

17.
The FT-Raman and FT-IR spectra for benzenesulfonic acid methyl ester (BSAME) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) method by employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for sulfonic acid and some substituted sulfonic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from DFT. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the sulfonic acid are effected upon profusely with the methyl substitution in comparison to benzene sulfonamide and these differences are interpreted.  相似文献   

18.
The FT-IR and FT-Raman spectra of 3,4-dimethylbenzaldehyde (3,4-DMB) has been recorded in the region 4000-400 and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 3,4-DMB were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-311G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

19.
In the present study, the FT-IR and FT-Raman spectra of 4-chloro-2-methylaniline (4CH2MA) have been recorded in the range of 4000-100 cm(-1). The fundamental modes of vibrational frequencies of 4CH2MA are assigned. All the geometrical parameters have been calculated by HF and DFT (LSDA, B3LYP and B3PW91) methods with 6-31G (d, p) and 6-311G (d, p) basis sets. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for aniline and some substituted aniline. The harmonic and anharmonic vibrational wavenumbers, IR intensities and Raman activities are calculated at the same theory levels used in geometry optimization. The calculated frequencies are scaled and compared with experimental values. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The impact of substitutions on the benzene structure is investigated. The molecular interactions between the substitutions (Cl, CH(3) and NH(2)) are also analyzed.  相似文献   

20.
The FT-IR and FT-Raman spectra of 2-bromo-4-chlorotoluene (2B4CT) molecule have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. Optimized geometrical structures, harmonic vibrational frequencies, intensities, reduced mass, force constants and depolarization ratio have been computed by the B3 based (B3LYP) density functional methods using 6-31+G(d,p) and 6-311++G(d,p) basis sets. The observed FT-IR and FT-Raman vibrational frequencies are analysed and compared with theoretically predicted vibrational frequencies. The geometries and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The Mulliken charges, the natural bonding orbital (NBO) analysis, the values of electric dipole moment (μ) and the first-order hyperpolarizability (β) of the investigated molecule were computed using DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The influences of bromine atom, chlorine atom and methyl group on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号