首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li Y  Hao N  Wang E  Yuan M  Hu C  Hu N  Jia H 《Inorganic chemistry》2003,42(8):2729-2735
Three novel supramolecular assemblies constructed from polyoxometalate and crown ether building blocks, [(DB18C6)Na(H(2)O)(1.5)](2)Mo(6)O(19).CH(3)CN, 1, and [(Na(DB18C6)(H(2)O)(2))(3)(H(2)O)(2)]XMo(12)O(40).6DMF.CH(3)CN (X = P, 2, and As, 3; DB18C6 = dibenzo-18-crown-6; DMF = N,N-dimethylfomamide), have been synthesized and characterized by elemental analyses, IR, UV-vis, EPR, TG, and single crystal X-ray diffraction. Compound 1 crystallizes in the tetragonal space group P4/mbm with a = 16.9701(6) A, c = 14.2676(4) A, and Z = 2. Compound 2 crystallizes in the hexagonal space group P6(3)/m with a = 15.7435(17) A, c = 30.042(7) A, gamma = 120 degrees, and Z = 2. Compound 3 crystallizes in the hexagonal space group P6(3)/m with a = 15.6882(5) A, c = 29.9778(18) A, gamma = 120 degrees, and Z = 2. Compound 1 exhibits an unusual three-dimensional network with one-dimensional sandglasslike channels based on the extensive weak forces between the oxygen atoms on the [Mo(6)O(19)](2)(-) polyoxoanions and the CH(2) groups of crown ether molecules. Compounds 2 and 3 are isostructural, and both contain a novel semiopen cagelike trimeric cation [(Na(DB18C6)(H(2)O)(2))(3)(H(2)O)(2)](3+). In their packing arrangement, an interesting 2-D "honeycomblike" "host" network is formed, in which the [XMo(12)O(40)](3)(-) (X = As and P) polyoxoanion "guests" resided.  相似文献   

2.
By using the compartmental dinucleating pyrazolate ligand HL, dinickel(II) complexes [LNi2(micro-N3)(acetone)2]X2 (1: X = CIO4; 2: X = BPh4) and tetranickel(II) complex [{LNi2(micro-N3)(MeOH)2](CI04)4 (3) have been prepared and structurally characterized. Complexes 1 and 2 differ in the torsion along the bridging micro-1,3-azide moiety, while the azido ligands in 3 adopt an unusual micro-1,1,3 bridging mode to connect the two subunits. All three complexes show overall antiferromagnetic coupling and an S = 0 ground state, but the torsion along the azide moiety is a determining factor for the coupling strength. Compounds 1 and 2 serve as preorganized building blocks for the controlled synthesis of alternating 1D polymeric structures 4-6 by replacement of their labile acetone ligands by additional azido ligands. Due to the modular synthetic approach, 4-6 can be described as Heisenberg antiferromagnetic systems with inherent bond alternation (HABA), whereby the organic ligand framework ensures that the individual nickel/azido chains are well isolated in the crystal lattice. Like their precursors, 4-6 are mainly distinguished by torsion along the micro-1,3-azido bridges, both within and between the bimetallic constituents. Magnetic measurements confirm an overall 5 = 0 ground state for 4-6, and coupling parameters have been deduced from quantum Monte Carlo simulations. The two J values for the alternating 1D chains can be clearly assigned on the basis of the magnetostructural correlations established for the bimetallic building blocks. The alternation ratio gamma = J2J1(-1) places the three new systems in the HABA regime for a singlet-dimer ground state.  相似文献   

3.
Dynamic covalent functionality has been acknowledged as a powerful tool for the construction of organised architectures, the reversible nature thermodynamically facilitates self-control and self-correction. The use of boronic acids complexation with diols and their congeners has already shown great promise in realising and developing reversible boron-containing multicomponent systems with dynamic covalent functionality. The structure-directing potential has lead to the development of a variety of self-organisation involving not only macrocycles, cages and capsules, but also porous covalent organic frameworks and polymers. Structure controls as well as remarkable synthesis are highlighted in this feature article.  相似文献   

4.
5.
The ortho-, meta-, and para- regioisomers of aminobenzoate are building blocks for a wide range of microbial natural products. Both the ortho-isomer (anthranilate) and PABA derive from the central shikimate pathway metabolite chorismate while the meta-isomer is not available by that route and starts from UDP-3-aminoglucose. PABA is largely funnelled into folate biosynthesis while anthranilate is the scaffold for biosynthetic elaboration into many natural heterocycles, most notably with its role in indole formation for tryptophan biosynthesis. Anthranilate is also converted to benzodiazepinones, fumiquinazolines, quinoxalines, phenoxazines, benzoxazolinates, quinolones, and phenazines, often with redox enzyme participation. The 5-hydroxy form of 3-aminobenzaote is the starter unit for ansa-bridged rifamycins, ansamitocins, and geldanamycins, whereas regioisomers 2-hydroxy, 4-hydroxy and 2,4-dihydroxy-3-aminobenzoate are key components of antimycin, grixazone, and platencin and platensimycin biosynthesis, respectively. The enzymatic mechanisms for generation of the aminobenzoate regioisomers and their subsequent utilization for diverse heterocycle and macrocycle construction are examined.  相似文献   

6.
We demonstrate the design and formation of thin films having divergent physicochemical properties by using two porphyrin building blocks with high chemical and optical resemblance. A predetermined variation in the molecular design is efficiently transferred and enhanced when constituting a two-dimensional film via control of molecular orientation. Variations of the peripheral substituents on the porphyrin ring resulted in control of the molecular orientation at the surface.  相似文献   

7.
8.
A concise, efficient and simple route to a series of bromoindole building blocks is described. The synthetic routes are highlighted by purification-free preparation of o-nitrocinnamate intermediates and clean, modified Cadogan indole syntheses. The scope of this indole synthesis has been explored and expanded through the use of a range of solvents and easily removable phosphine reagents.  相似文献   

9.
Two tetrapyridyl-substituted tetraphenylethylenes have been prepared via Suzuki coupling between tetrabromo tetraphenylethylene and 3- or 4-pyridine boronic acid. Both compounds exhibit aggregation-induced emission as determined by solid state fluorescence spectroscopy and solution phase fluorescence measurements performed in aqueous/organic solvent mixtures. Solution phase fluorescence was also found to be switchable as a function of pH. 3-Pyridyl-substituted tetraphenylethylene has been structurally characterized by X-ray crystallography.  相似文献   

10.
Synthetic H-bonded molecular zippers contain no sequence information that can be used to engineer the selective binding interactions characteristic of biopolymers; reversing the sense of the amide bonds in the two binding partners generates a new orthogonal recognition motif and the mutually complementary binding partners form complexes an order of magnitude more stable than the corresponding mismatch complexes.  相似文献   

11.
A novel anionic metal-organic cube (MOC-1), [Ni(8)(HImDC)(12)](8-), has been synthesized by metal-ligand directed assembly of eight tri-connected Ni nodes and twelve doubly deprotonated bis(bidentate) imidazoledicarboxylic acid ligands (HImDC).  相似文献   

12.
A new and divergent synthetic route to oligodiacetylene (ODA) building blocks has been developed via Sonogashira reactions under a reductive atmosphere. These central building blocks provide a new way for rapid preparation of long ODAs. In addition, we report on their optoelectronic properties which are dependent on their end cap. Finally, the formation of their radical cations, and their optical properties and reactivity towards nucleophiles are investigated.  相似文献   

13.
Non-ordered organic-inorganic mesoporous hybrid materials with basic sites have been synthesized following a fluoride-catalysed sol-gel process at neutral pH and low temperatures that avoids the use of structural directing agents (SDAs). Proton sponges have been used as the organic builder of the hybrids, while the inorganic part corresponds to silica tetrahedra. The proton sponges are diamines that exhibit very high basicity and, after functionalization, have been introduced as part of the walls of the mesoporous silica by one-pot synthesis. Several hybrids with different organic loadings have been synthesized and characterized by gas adsorption, thermogravimetric and elemental analysis, solid state MAS-NMR and FTIR spectroscopy. These hybrids show high activity as base catalysts and can be recycled.  相似文献   

14.
The modular synthesis of glycosaminoglycans requires straightforward methods for the production of large quantities of protected uronic acid building blocks. In particular, the preparation of fully differentiated iduronic acids has proven particularly challenging. An efficient route to methyl 3-O-benzyl-1,2-O-isopropylidene-alpha-l-idopyranosiduronate 6 from diacetone glucose in nine steps and 36% overall yield is described. Idopyranosiduronate 6 is useful as a glycosyl acceptor and as an intermediate that may be further elaborated into iduronic acid trichloroacetimidate glycosyl donors for the assembly of glycosaminoglycan structures as illustrated here.  相似文献   

15.
We perform lattice Monte Carlo simulations to study the self-assembly of functionalized inorganic nanoscale building blocks using recognitive biomolecule linkers. We develop a minimal coarse-grained lattice model for the nanoscale building block (NBB) and the recognitive linkers. Using this model, we explore the influence of the size ratio of linker length to NBB diameter on the assembly process and the structural properties of the resulting aggregates, including the spatial distribution of NBBs and aggregate topology. We find the constant-kernel Smoluchowski theory of diffusion-limited cluster-cluster aggregation describes the aggregation kinetics for certain size ratios.  相似文献   

16.
The development of chiral crystalline porous materials (CPMs) containing multiple chiral building blocks plays an important role in chiral chemistry and applications but is a challenging task. Herein, we report the first example of bichiral building block based enantiopure CPM films containing metal–organic cages (MOCs) and metal complexes. The functionalized substrate was immersed subsequently into homochiral metal complex (R)- or (S)-Mn(DCH)3 (DCH = 1,2-diaminocyclohexane) and racemic Ti4L6 cage (L = embonate) solutions by a layer-by-layer growth method. During the assembly process, the substrate surface coordinated with (R)- or (S)-Mn(DCH)3 can, respectively, layer-by-layer chiroselectively connect Δ- or Λ-Ti4L6 cages to form homochiral (R, Δ)- or (S, Λ)-CPM films with a preferred [111] growth orientation, tunable thickness and homogeneous surface. The resulting enantiopure CPM films show strong chirality, photoluminescence, and circularly polarized luminescence (CPL) properties as well as good enantioselective adsorption toward enantiomers of 2-butanol and methyl-lactate. The present in situ surface chiroselective strategy opens a new route to assemble homochiral CPM films containing multiple chiral building blocks for chiral applications.

Bichiral building block based enantiopure CPM films containing metal–organic cages (MOCs) and metal complexes are chiroselectively assembled on the substrate surface by a layer-by-layer method.  相似文献   

17.
In this tutorial review the process and applications of peptide self-assembly into nanotubes, nanospheres, nanofibrils, nanotapes, and other ordered structures at the nano-scale are discussed. The formation of well-ordered nanostructures by a process of self-association represents the essence of modern nanotechnology. Such self-assembled structures can be formed by a variety of building blocks, both organic and inorganic. Of the organic building blocks, peptides are among the most useful ones. Peptides possess the biocompatibility and chemical diversity that are found in proteins, yet they are much more stable and robust and can be readily synthesized on a large scale. Short peptides can spontaneously associate to form nanotubes, nanospheres, nanofibrils, nanotapes, and other ordered structures at the nano-scale. Peptides can also form macroscopic assemblies such as hydrogels with nano-scale order. The application of peptide building blocks in biosensors, tissue engineering, and the development of antibacterial agents has already been demonstrated.  相似文献   

18.
19.
An efficient de novo synthesis of uronic acid building blocks is described. The synthetic strategy relies on the stereoselective elongation of thioacetal protected dialdehydes 12 a and 17. The dialdehydes are prepared from D-xylose, a cheap and commercially available source. A highly stereoselective MgBr(2)OEt(2)-mediated Mukaiyama aldol addition to C4-aldehyde 12 a is performed to obtain D-glucuronic acid building block 16, whereas L-iduronic acid building block 22 is prepared by MgBr(2)OEt(2)-mediated cyanation of C5-aldehyde 17. Synthesis of a heparin disaccharide demonstrates the utility of the de novo strategy for the assembly of glycosaminoglycan oligosaccharides.  相似文献   

20.
An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define `fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library `diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号