首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
We demonstrate that the vacuum ultraviolet (VUV) photodissociation dynamics of N(2) and CO(2) can be studied using VUV photoionization with time-sliced velocity-mapped ion imaging (VUV-PI-VMI) detection. The VUV laser light is produced by resonant sum frequency mixing in Kr. N(2) is used to show that when the photon energy of the VUV laser is above the ionization energy of an allowed transition of one of the product atoms it can be detected and characterized as the wavelength is varied. In this case a β parameter = 0.57 for the N((2)D°) was measured after exciting N(2)(o(1)Π(u), v(') = 2, J(') = 2) ← N(2)(X(1)Σ(g) (+), v(") = 0, J(") = 1). Studies with CO(2) show that when there is no allowed transition, an autoionization resonance can be used for the detection of a product atom. In this case it is shown for the first time that the O((1)D) atom is produced with CO((1)Σ(+)) at 92.21 nm. These results indicate that the VUV laser photodissociation combined with the VUV-PI-VMI detection is a viable method for studying the one-photon photodissociation from the ground state of simple molecules in the extreme ultraviolet and VUV spectral regions.  相似文献   

2.
Following photodissociation of formyl fluoride (HFCO) at 193 nm, we detected products with fragmentation translational spectroscopy utilizing a tunable vacuum ultraviolet beam from a synchrotron for ionization. Among three primary dissociation channels observed in this work, the F-elimination channel HFCO-->HCO+F dominates, with a branching ratio approximately 0.66 and an average release of kinetic energy approximately 55 kJ mol(-1); about 17% of HCO further decomposes to H+CO. The H-elimination channel HFCO-->FCO+H has a branching ratio approximately 0.28 and an average release of kinetic energy approximately 99 kJ mol(-1); about 21% of FCO further decomposes to F+CO. The F-elimination channel likely proceeds via the S1 surface whereas the H-elimination channel proceeds via the T1 surface; both channels exhibit moderate barriers for dissociation. The molecular HF-elimination channel HFCO-->HF+CO, correlating with the ground electronic surface, has a branching ratio of only approximately 0.06; the average translational release of 93 kJ mol(-1), approximately 15% of available energy, implies that the fragments are highly internally excited. Detailed mechanisms of photodissociation are discussed.  相似文献   

3.
Adiabatic potential energy surfaces for the six lowest singlet electronic states of N(2)O (X (1)A('), 2 (1)A('), 3 (1)A('), 1 (1)A("), 2 (1)A(") and 3 (1)A(")) have been computed using an ab initio multireference configuration interaction (MRCI) method and a large orbital basis set (aug-cc-pVQZ). The potential energy surfaces display several symmetry related and some nonsymmetry related conical intersections. Total photodissociation cross sections and product rotational state distributions have been calculated for the first ultraviolet absorption band of the system using the adiabatic ab initio potential energy and transition dipole moment surfaces corresponding to the lowest three excited electronic states. In the Franck-Condon region the potential energy curves corresponding to these three states lie very close in energy and they all contribute to the absorption cross section in the first ultraviolet band. The total angular momentum is treated correctly in both the initial and final states. The total photodissociation spectra and product rotational distributions are determined for N(2)O initially in its ground vibrational state (0,0,0) and in the vibrationally excited (0,1,0) (bending) state. The resulting total absorption spectra are in good quantitative agreement with the experimental results over the region of the first ultraviolet absorption band, from 150 to 220 nm. All of the lowest three electronically excited states [(1)Sigma(-)(1 (1)A(")), (1)Delta(2 (1)A(')), and (1)Delta(2 (1)A("))] have zero transition dipole moments from the ground state [(1)Sigma(+)(1 (1)A('))] in its equilibrium linear configuration. The absorption becomes possible only through the bending motion of the molecule. The (1)Delta(2 (1)A('))<--X (1)Sigma(+)((1)A(')) absorption dominates the absorption cross section with absorption to the other two electronic states contributing to the shape and diffuse structure of the band. It is suggested that absorption to the bound (1)Delta(2 (1)A(")) state makes an important contribution to the experimentally observed diffuse structure in the first ultraviolet absorption band. The predicted product rotational quantum state distribution at 203 nm agrees well with experimental observations.  相似文献   

4.
Photodissociation dynamics of ketene at 157.6 nm has been investigated using the photofragment translational spectroscopic technique based on photoionization detection using vacuum-ultraviolet synchrotron radiation. Three dissociation channels have been observed: CH2+CO, CH+HCO, and HCCO+H. The product translational energy distributions and angular anisotropy parameters were measured for all three observed dissociation channels, and the relative branching ratios for different channels were also estimated. The experimental results show that the direct C-C bond cleavage (CH2+CO) is the dominant channel, while H migration and elimination channels are very minor. The results in this work show that direct dissociation on excited electronic state is much more significant than the indirect dissociation via the ground state in the ketene photodissociation at 157.6 nm.  相似文献   

5.
The electronic spectrum of Ni?(H?O) has been measured from 16200 to 18000 cm?1 using photofragment spectroscopy. Transitions to two excited electronic states are observed; they are sufficiently long-lived that the spectrum is vibrationally and partially rotationally resolved. An extended progression in the metal-ligand stretch is observed, and the absolute vibrational quantum numbering is assigned by comparing isotopic shifts between ??Ni?(H?O) and ??Ni?(H?O). Time-dependent density functional calculations aid in assigning the spectrum. Two electronic transitions are observed, from the 2A? ground state (which correlates to the 2D, 3d? ground state of Ni?) to the 32A? and 22A? excited states. These states are nearly degenerate and correlate to the 2F, 3d?4s excited state of Ni?. Both transitions are quite weak, but surprisingly, the transition to the 2A? state is stronger, although it is symmetry-forbidden. The 3d?4s states of Ni? interact less strongly with water than does the ground state; therefore, the excited states observed are less tightly bound and have a longer metal-ligand bond than the ground state. Calculations at the CCSD(T)/aug-cc-pVTZ level predict that binding to Ni? increases the H-O-H angle in water from 104.2 to 107.5° as the metal removes electron density from the oxygen lone pairs. The photodissociation spectrum shows well-resolved rotational structure due to rotation about the Ni-O axis. This permits determination of the spin rotation constants ε(αα)' = -12 cm?1 and ε(αα)' = -3 cm?1 and the excited state rotational constant A' = 14.5 cm?1. This implies a H-O-H angle of 104 ± 1° in the 22A? excited state. The O-H stretching frequencies of the ground state of Ni?(H?O) were measured by combining IR excitation with visible photodissociation in a double resonance experiment. The O-H symmetric stretch is ν?' = 3616.5 cm?1; the antisymmetric stretch is ν?' = 3688 cm?1. These values are 40 and 68 cm?1 lower, respectively, than those in bare H?O.  相似文献   

6.
Fluorescence excitation spectra produced through photoexcitation of N(2) using synchrotron radiation in the spectral region between 80 and 100 nm have been studied. Two broadband detectors were employed to simultaneously monitor fluorescence in the 115-320 nm and 300-700 nm regions, respectively. The peaks in the vacuum ultraviolet fluorescence excitation spectra are found to correspond to excitation of absorption transitions from the ground electronic state to the b (1)Pi(u), b(') (1)Sigma(u) (+), c(n) (1)Pi(u) (with n=4-8), c(n) (') (1)Sigma(u) (+) (with n=5-9), and c(4) (')(v('))(1)Sigma(u) (+) (with v(')=0-8) states of N(2). The relative fluorescence production cross sections for the observed peaks are determined. No fluorescence has been produced through excitation of the most dominating absorption features of the b-X transition except for the (1,0), (5,0), (6,0), and (7,0) bands, in excellent agreement with recent lifetime measurements and theoretical calculations. Fluorescence peaks, which correlate with the long vibrational progressions of the c(4) (') (1)Sigma(u) (+) (with v(')=0-8) and the b(') (1)Sigma(u) (+) (with v(') up to 19), have been observed. The present results provide important information for further unraveling of complicated and intriguing interactions among the excited electronic states of N(2). Furthermore, solar photon excitation of N(2) leading to the production of c(4) (')(0) may provide useful data required for evaluating and analyzing dayglow models relevant to the interpretation of c(4) (')(0) in the atmospheres of Earth, Jupiter, Saturn, Titan, and Triton.  相似文献   

7.
Direct branching ratio measurements of the three lowest dissociation channels of (12)C(16)O that produce C((3)P) + O((3)P), C((1)D) + O((3)P), and C((3)P) + O((1)D) are reported in the vacuum ultraviolet region from 108,000 cm(-1) (92.59 nm) to 110,500 cm(-1) (90.50 nm) using the time-slice velocity-map ion imaging and nonlinear resonant four-wave mixing techniques. Rotationally, resolved carbon ion yield spectra for both (1)Σ(+) and (1)Π bands of CO in this region have been obtained. Our measurements using this technique show that the branching ratio in this energy region, especially the relative percentages of the two spin-forbidden channels, is strongly dependent on the particular electronic and vibrational energy levels of CO that are excited.  相似文献   

8.
The caging effect of the host environment on photochemical reactions of molecular oxygen is investigated using monochromatic synchrotron radiation and spectrally resolved fluorescence. Oxygen doped clusters are formed by coexpansion of argon and oxygen, by pickup of molecular oxygen or by multiple pickup of argon and oxygen by neon clusters. Sequential pickup provides radially ordered core-shell structures in which a central oxygen molecule is surrounded by argon layers of variable thickness inside large neon clusters. Pure argon and core-shell argon-neon clusters excited with approximately 12 eV monochromatic synchrotron radiation show strong fluorescence in the vacuum ultraviolet (vuv) spectral range. When the clusters are doped with O2, fluorescence in the visible (vis) spectral range is observed and the vuv radiation is found to be quenched. Energy-resolved vis fluorescence spectra show the 2 1Sigma+-->1 1Sigma+(ArO(1S)-->ArO(1D)) transition from argon oxide as well as the vibrational progression A '3Delta u(nu'=0)-->X 3Sigmag*(nu") of O2 indicating that molecular oxygen dissociates and occasionally recombines depending on the experimental conditions. Both the emission from ArO and O2 as well the vuv quenching by oxygen are found to depend on the excitation energy, providing evidence that the energy transfer from the photoexcited cluster to the embedded oxygen proceeds via the O2+ ground state. The O2+ decays via dissociative recombination and either reacts with Ar resulting in electronically excited ArO or it recombines to O2 within the Ar cage. Variation of the Ar layer thickness in O2-Ar-Ne core-shell clusters shows that a stable cage is formed by two solvation layers.  相似文献   

9.
The present review focused on selected, recent experimental progress of photodissociation dynamics of small molecules covering the vacuum ultraviolet (VUV) range from 6 eV to20 eV. These advancements come about due to the available laser based VUV light sources along with the developments of advanced experimental techniques, including the velocitymap imaging (VMI), H-atom Rydberg tagging time-of-flight (HRTOF) techniques, as well as the two-color tunable VUV-VUV laser pump-probe detection method. The applications of these experimental techniques have allowed VUV photodissociation studies of many diatomic and triatomic molecules to quantum state-to-state in detail. To highlight the recent accomplishments, we have summarized the results on several important molecular species, including H2 (D2, HD), CO, N2, NO, O2, H2O (D2O, HOD), CO2, and N2O. The detailed VUV photodissociation studies of these molecules are of astrochemical and atmospheric relevance. Since molecular photodissociation initiated by VUV excitation is complex and is often governed by multiple electronic potential energy surfaces, the unraveling of the complex dissociation dynamics requires state-to-state cross section measurements. The newly constructed Dalian Coherent Light Source (DCLS), which is capable of generating coherent VUV radiation with unprecedented brightness in the range of 50-150 nm, promises to propel the photodissociation experiment to the next level.  相似文献   

10.
Photodissociation of jet-cooled o-, m-, and p-ethyltoluene and p-fluoroethylbenzene at both 193 and 248 nm was studied separately using vacuum ultraviolet photoionization/multimass ion imaging techniques. Dissociation occurs exclusively through alkyl chain C-C bond cleavage. The measured photofragment translational energy distributions at 193 nm decrease monotonically with increasing translational energy. The distributions indicate that dissociation occurs from the ground electronic state after internal conversion. However, the photofragment translational energy distributions from o-, m-, and p-ethyltoluene obtained at 248 nm contain a slow and a fast component; the ratios between these components are 1:4, 1:1.3, and 1:6, respectively. On the other hand, only the slow component was observed from p-fluoroethylbenzene at 248 nm. The fast components are attributed to the dissociation from the triplet state after intersystem crossing, and the slow components result from the dissociation in the ground electronic state. Comparison with the photodissociation of benzene and toluene and ab initio calculation has been made.  相似文献   

11.
12.
The vacuum ultraviolet photodissociation of OCS via the $F$ $3^1\Pi$ Rydberg states was investigated in the range of 134$-$140 nm by means of the time-sliced velocity map ion imaging technique. The images of S($^1$D$_2$) products from the CO($X^1\Sigma^+$)+S($^1$D$_2$) dissociation channel were acquired at five photolysis wavelengths, corresponding to a series of symmetric stretching vibrational excitations in OCS($F$ $3^1\Pi$, $v_1$=0$-$4). The total translational energy distributions, vibrational populations and angular distributions of CO($X^1\Sigma^+$, $v$) coproducts were derived. The analysis of experimental results suggests that the excited OCS molecules dissociate to CO($X^1\Sigma^+$) and S($^1$D$_2$) products via non-adiabatic couplings between the upper $F$ $3^1\Pi$ states and the lower-lying states both in the C$_{\infty \textrm{v}}$ and C$_{\rm{s}}$ symmetry. Furthermore, strong wavelength dependent behavior has been observed: the greatly distinct vibrational populations and angular distributions of CO($X^1\Sigma^+$, $v$) products from the lower ($v_1$=0$-$2) and higher ($v_1$=3, 4) vibrational states of the excited OCS($F$ $3^1\Pi$, $v_1$) demonstrate that very different mechanisms are involved in the dissociation processes. This study provides evidence for the possible contribution of vibronic coupling and the crucial role of vibronic coupling on the vacuum ultraviolet photodissociation dynamics.  相似文献   

13.
The trans and cis forms of formic acid (HCOOH) in solid argon favor essentially different photodissociation (193 nm) products, H2O + CO and H2 + CO2, respectively. The branching ratio of these channels differs between the two conformers by a factor of >10. The observed selective photodissociation features conformational memory when the transition state of a molecule is reached before torsional randomization. These data demonstrate that the photodissociation products can be efficiently steered with selective narrow-band infrared radiation promoting rotational isomerism, which makes a strong case of optically controlled chemical reactions  相似文献   

14.
With radiation from a synchrotron we measured the spectra of several small molecular species, in the solid phase at 10K, either pure--O2, NO, CO2, N2O, H2O and NH3--or, for NH3, also dispersed in Ar at molar ratio 1/250, from the onset of absorption in the ultraviolet region until the limits of transmission by crystalline LiF or solid Ar. In a quantitative treatment of spectral data, we fitted the total absorption profile divided by wavenumber to Gaussian curves of minimal number, and made tentative assignments of electronic transitions and vibrational structure by comparison with spectra of gaseous species. These results illuminate the nature of electronic spectra of samples in solid phases in the vacuum ultraviolet region.  相似文献   

15.
The optical transitions of supersonically cooled OsN have been investigated in the range from 19,200 to 23,900 cm(-1) using resonant two-photon ionization spectroscopy. More than 20 vibronic bands were observed, 17 of which were rotationally resolved and analyzed. The ground state is confirmed to be (2)Δ(5/2), deriving from the 1σ(2) 2σ(2) 1π(4) 1δ(3) 3σ(2) electronic configuration. The X (2)Δ(5/2) ground state rotational constant for (192)Os(14)N was found to be B(0) = 0.491921(34) cm(-1), giving r(0) = 1.62042(6) ? (1σ error limits). The observed bands were grouped into three band systems with Ω' = 7/2 and four with Ω' = 3/2, corresponding to the three (2)Φ(7/2) and four (2)Π(3/2) states expected from the 1σ(2) 2σ(2) 1π(4) 1δ(3) 3σ(1) 2π(1) and 1σ(2) 2σ(2) 1π(4) 1δ(2) 3σ(2) 2π(1) electronic configurations. In addition, two interacting upper states with Ω' = 5/2 were observed, one of which is thought to correspond to a 1σ(2) 2σ(2) 1π(3) 1δ(3) 3σ(2) 2π(1), (2)Δ(5/2) state. Spectroscopic constants are reported for all of the observed states, and comparisons to related molecules are made. The ionization energy of OsN is estimated as IE(OsN) = 8.80 ± 0.06 eV.  相似文献   

16.
The angular distribution of products from the ultraviolet photodissociation of nitrous oxide yielding O((1)D) and N(2)(X Σ(g)(+)(1)) was investigated using classical trajectory calculations. The calculations modeled absorption only to the 2(1)A(') electronic state but used surface-hopping techniques to model nonadiabatic transitions to the ground electronic state late in the dissociation. Observed values of the anisotropy parameter β, which decrease as the product N(2) rotational quantum number j increases, could be well reproduced. The relatively low observed β values arise principally from nonaxial recoil due to the very strong bending forces present in the excited state. In the main part of the product rotational distribution near 203 nm, an unusual dynamical effect produces the decrease in β with increasing j; nonaxial recoil effects remain approximately constant while higher j product molecules arise from parent molecules that had their transition dipole moments aligned more closely along the molecular axis. In both low and high j tails of the rotational distribution, the variations in β with j are caused by changes in the extent of nonaxial recoil. In the high-j tail, additional torque present on the ground state potential energy surface following nonadiabatic transitions causes both the additional rotational excitation and the lower β values.  相似文献   

17.
Synchrotron radiation circular dichroism (SRCD) spectra of ribose and deoxyribose sugars, adenosine, AMP and dAMP nucleotides and cyclic derivatives were measured in the vacuum ultraviolet region (down to 168 nm for sugars and 175 nm for adenine derivatives) and at different pH values (3, 6-7, 9-10) and temperatures (between 5 and 45 degrees C). The information content in the VUV region is important since the CD bands strongly depend on the chemical structure of the sugar, the presence and orientation of a phosphate group and the protonation state of adenine. On the other hand, single or double deprotonation of the phosphoric acid group has no influence on the spectra. We assign the vacuum ultraviolet (VUV) CD bands of the nucleoside and nucleotides to be due mainly to n-->pi* transitions in the adenine nucleobase based on a comparison with the absorption spectra. The CD bands of the sugars are due to n(O -->sigma*) transitions and are much smaller than the CD signal from the nucleotides in the VUV region. Bands are assigned to both pyranose and open-chain forms.  相似文献   

18.
The electronic spectroscopy of CH3Mn(CO)5 has been investigated by means of ab initio multiconfigurational MS-CASPT2/CASSCF calculations. The absorption spectrum is characterized by a series of Metal-Centered (MC) excited states in the UV energy domain (below 290 nm) that could be responsible for the observed photoreactivity starting at 308 nm. The upper part of the spectrum is overcrowded between 264 and 206 nm and dominated by a high density of Metal-to-Ligand-Charge-Transfer (MLCT) states corresponding mainly to 3d(Mn) --> pi*(CO) excitations. A non-negligible contribution of Metal-to-sigma-Bond-Charge-Transfer (MSBCT) states corresponding to 3d(Mn) --> sigma*(Mn-CH3) excitations is also present in the theoretical spectrum of CH3Mn(CO)5. However, in contrast to other transition metal hydrides and methyl substituted (HMn(CO)5, HCo(CO)4, and CH3Co(CO)4) these MSBCT transitions do not participate to the lowest bands of the spectrum as main contributions. The photochemistry of CH3Mn(CO)5, namely the loss of a CO ligand vs. the metal-methyl bond homolysis, is investigated by means of MS-CASPT2 states correlation diagrams. This study illustrates the complexity of the photodissociation mechanism of this class of molecules, which involves a large number of nearly degenerate electronic states with several channels for fragmentation.  相似文献   

19.
The oxygen isotope fractionation associated with O+CO-->CO(2) reaction was investigated experimentally where the oxygen atom was derived from ozone or oxygen photolysis. The isotopic composition of the product CO(2) was analyzed by mass spectrometry. A kinetic model was used to calculate the expected CO(2) composition based on available reaction rates and their modifications for isotopic variants of the participating molecules. A comparison of the two (experimental data and model predictions) shows that the product CO(2) is endowed with an anomalous enrichment of heavy oxygen isotopes. The enrichment is similar to that observed earlier in case of O(3) produced by O+O(2) reaction and varies from 70 0/00 to 136 0/00 for (18)O and 41 0/00 to 83 0/00 for (17)O. Cross plot of delta (17)O and delta (18)O of CO(2) shows a linear relation with slope of approximately 0.90 for different experimental configurations. The enrichment observed in CO(2) does not depend on the isotopic composition of the O atom or the sources from which it is produced. A plot of Delta(delta (17)O) versus Delta(delta (18)O) (two enrichments) shows linear correlation with the best fit line having a slope of approximately 0.8. As in case of ozone, this anomalous enrichment can be explained by invoking the concept of differential randomization/stabilization time scale for two types of intermediate transition complex which forms symmetric ((16)O(12)C(16)O) molecule in one case and asymmetric ((16)O(12)C(18)O and (16)O(12)C(17)O) molecules in the other. The delta (13)C value of CO(2) is also found to be different from that of the initial CO due to the mass dependent fractionation processes that occur in the O+CO-->CO(2) reaction. Negative values of Delta(delta (13)C) ( approximately 12.1 0/00) occur due to the preference of (12)C in CO(2)* formation and stabilization. By contrast, at lower pressures (approximately 100 torr) surface induced deactivation makes Delta(delta (13)C) zero or slightly positive.  相似文献   

20.
利用真空紫外同步辐射和自制的飞行时间质谱(TOF-MS)仪,研究了环氧乙烷的光电离与光解离过程,通过测量各离子的光电高效率(PIE)曲线,获得了该分子的电离势和所有碎片离子的出现势.分析了离子的光电离解离通道,并讨论了它们的竞争情况.结合有关公认的热力学数据,算出它们的标准生成焓.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号