首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the first miniaturized fluorescent sensor based on algae, with an organic light emitting diode (OLED) and an organic photodetector (OPD) integrated into a microfluidic chip. The blue emission OLED was used as the excitation source, while a blend of PTB3/PC(61)BM was used for the fabrication of the organic photodetector. Excitation and emission color filters based on acid/base dyes and a metal complex were developed and assembled with the organic optoelectronic components in order to complete the fluorescent detection system. The detection system was then integrated in a microfluidic chip made from (poly)dimethylsiloxane (PDMS). The complete sensor is designed to detect algal fluorescence in the microfluidic chamber. Algal chlorophyll fluorescence enables evaluation of the toxicity of pollutants like herbicides and metals-ions from agricultural run-offs. The entirely organic bioassay here presented allowed detection of the toxic effects of the herbicide Diuron on Chlamydomonas reinhardtii green algae that gave 50% inhibition of the algae photochemistry (EC(50)) with a concentration as low as 11 nM.  相似文献   

2.
Zhang L  Wang P  Xiao Y  Yu H  Tong L 《Lab on a chip》2011,11(21):3720-3724
We report a microfibre absorption sensor by using a 900 nm diameter silica microfibre embedded in a 125 μm wide microchannel with a detection length of 2.5 cm. Investigated by measuring the absorbance of methylene blue (MB), the sensor shows a detection limit down to 50 pM with excellent reversibility in a concentration range of 0-5 nM. The sensor has also been applied to bovine serum albumin (BSA) measurement, with a detection limit of 10 fg mL(-1). In addition, the sample volume requirement is merely 500 nL with a probing light power of about 150 nW, which is very promising for safe detection of single or a few molecules of biological specimens.  相似文献   

3.
L Guo  Y Yin  R Huang  B Qiu  Z Lin  HH Yang  J Li  G Chen 《Lab on a chip》2012,12(20):3901-3906
The impact of chiral compounds on pharmacological and biological processes is well known. With the increasing need for enantiomerically pure compounds, effective strategies for enantioseparation and chiral discrimination are in great demand. Herein we report a simple but efficient approach for the enantioselective determination of chiral compounds based on a localized surface plasmon resonance (LSPR) biosensor integrated with a microfluidic chip. A glass microfluidic chip with an effective volume of ~0.75 μL was fabricated for this application. Gold nanorods (AuNRs) with an aspect ratio of ~2.6 were self-assembled onto the surface of the inner wall of the chip to serve as LSPR transducers, which would translate the analyte binding events into quantitative concentration information. Human α-thrombin was immobilized onto the AuNR surface for enantioselective sensing of the enantiomers of melagatran. The proposed sensor was found to be highly selective for RS-melagatran, while the binding of its enantiomer, SR-melagatran, to the sensor was inactive. Under optimal conditions, the limit of detection of this sensor for RS-melagatran was found to be 0.9 nM, whereas the presence of 10?000-fold amounts of SR-melagatran did not interfere with the detection. To the best of our knowledge, this is the first demonstration of an LSPR-based enantioselective biosensor.  相似文献   

4.
Micellar affinity gradient focusing (MAGF) is a microfluidic counterflow gradient focusing technique that combines the favorable features of MEKC and temperature gradient focusing. MAGF separates analytes on the basis of a combination of electrophoretic mobility and partitioning with the micellar phase. A temperature gradient is produced along the separation channel containing an analyte/micellar system to create a gradient in interaction strength (retention factor) between the analytes and micelles. Combined with a bulk counterflow, species concentrate at a unique point where their total velocity sums to zero. MAGF can be used in scanning mode by varying the bulk flow so that a large number of analytes can be sequentially focused and passed by a single detection point. In this work, we develop a bilinear temperature gradient along the separation channel that improves separation performance over the conventional linear designs. The temperature profile along the channel consists of a very sharp gradient used to preconcentrate the sample followed by a shallow gradient that increases resolution. We fabricated a hybrid PDMS/glass microfluidic chip with integrated micro heaters that generate the bilinear profile. Performance is characterized by separating several different samples including fluorescent dyes using SDS surfactant and pI markers using both SDS and poly-SUS surfactants as the micellar phase. The new design shows a nearly two times improvement in peak capacity and resolution in comparison to the standard linear temperature gradient.  相似文献   

5.
In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300 V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption.  相似文献   

6.
The use of a miniaturised planar separation device with integrated conductivity detection for performing bidirectional isotachophoresis (ITP) is described. The chips were produced in poly(methyl methacrylate) (PMMA) using a milling procedure. To enable bidirectional ITP the devices were designed to inject samples into the centre of the section channel and incorporated two integrated on-column conductivity detectors, positioned at opposite ends of this channel. When used with a hydrodynamic sample transport system the devices were used for the analysis of a range of small ions: NH4+; Na+; Mg2+; Ca2+; Li+; NO3-; ClO4-; SO4(2-); F-. Results sucessfully achieved included the simultaneous separation of three anions and three cations.  相似文献   

7.
Ju WJ  Fu LM  Yang RJ  Lee CL 《Lab on a chip》2012,12(3):622-626
A miniaturized distillation system is presented for separating sulfurous acid (H(2)SO(3)) into sulfur dioxide (SO(2)) and water (H(2)O). The major components of the proposed system include a microfluidic distillation chip, a power control module, and a carrier gas pressure control module. The microfluidic chip is patterned using a commercial CO(2) laser and comprises a serpentine channel, a heating zone, a buffer zone, a cooling zone, and a collection tank. In the proposed device, the H(2)SO(3) solution is injected into the microfluidic chip and is separated into SO(2) and H(2)O via an appropriate control of the distillation time and temperature. The gaseous SO(2) is then transported into the collection chamber by the carrier gas and is mixed with DI water. Finally, the SO(2) concentration is deduced from the absorbance measurements obtained using a spectrophotometer. The experimental results show that a correlation coefficient of R(2) = 0.9981 and a distillation efficiency as high as 94.6% are obtained for H(2)SO(3) solutions with SO(2) concentrations in the range of 100-500 ppm. The SO(2) concentrations of two commercial red wines are successfully detected using the developed device. Overall, the results presented in this study show that the proposed system provides a compact and reliable tool for SO(2) concentration measurement purposes.  相似文献   

8.
Zhang-Run Xu  Cui-Hong Liu  Jin Fang 《Talanta》2010,80(3):1088-1093
A novel microfluidic chip integrating an osmosis-based micro-pump was developed and used for perfusion cell culture. The micro-pump includes two sealed chambers, i.e., the inner osmotic reagent chamber and the outer water chamber, sandwiching a semi-permeable membrane. The water in the outer chamber was forced to flow through the membrane into the inner chamber via osmosis, facilitating continuous flow of fluidic zone in the channel. An average flow rate of 0.33 μL min−1 was obtained within 50 h along with a precision of 4.3% RSD (n = 51) by using a 100 mg mL−1 polyvinylpyrrolidone (PVP) solution as the osmotic driving reagent and a flow passage area of 0.98 cm2 of the semi-permeable membrane. The power-free micro-pump has been demonstrated to be pulse-free offering stable flow rates during long-term operation. The present microfluidic chip has been successfully applied for the perfusion culture of human colorectal carcinoma cell by continuously refreshing the culture medium with the osmotic micro-pump. In addition, in situ cell immunostaining was also performed on the microchip by driving all the reagent zones with the integrated micro-pump.  相似文献   

9.
Liu AL  He FY  Hu YL  Xia XH 《Talanta》2006,68(4):1303-1308
Rapid separation and determination of acetaminophen and its hydrolysate with end-channel electrochemical (EC) detection integrated on a plastified poly(ethylene terephthalate) (PET)-toner microchip capillary electrophoresis (CE) system was investigated. In this separation and detection system, a Pt ultramicroelectrode integrated on a three-dimensional adjustor was used as working electrode. Factors influencing the separation and detection were investigated and optimized. Results show that acetaminophen and p-aminophenol can be well separated within 84 s with R.S.D. < 1% for migration time and R.S.D. < 3.6% for detection current for both analytes. Detection limits for both analytes are determined to be 5.0 μM (S/N = 3). This method has been successfully applied to the detection of trace p-aminophenol in paracetamol tablets. The results demonstrate that the PET-toner microchips can obtain better performance than PDMS microfluidic devices but at much lower cost.  相似文献   

10.
11.
Liu X  Liu X  Liang A  Shen Z  Zhang Y  Dai Z  Xiong B  Lin B 《Electrophoresis》2006,27(15):3125-3128
We developed a microfluidic chip-affinity CE method based on indirect LIF detection to study protein-drug interactions. The interaction between heparin and BSA was quantitatively studied, as a model system. In our method, sodium fluorescein was chosen as background, and redistilled water as marker to monitor EOF. The electrophoretic mobility changes of BSA were measured, with various concentrations of heparin added to the running buffer. Each run was completed within 80 s. The binding constant was determined to be (1.24 +/- 0.05) x 10(3) M(-1), which was in good agreement with that reported in the literature.  相似文献   

12.
建立了微流控芯片非接触电导检测法测定片剂中盐酸奈福泮含量的方法.探讨并优化了缓冲溶液种类和配比、添加剂、分离电压和进样时间等电泳分离条件.结果表明,以2mmol/L HAc+1mmol/L NaAc( pH4.5)不加添加剂为运行缓冲溶液,分离电压2.00 kV、进样时间10 s时,1min内可实现盐酸奈福泮快速分离检...  相似文献   

13.
Determination of SARS-coronavirus by a microfluidic chip system   总被引:4,自引:0,他引:4  
Zhou X  Liu D  Zhong R  Dai Z  Wu D  Wang H  Du Y  Xia Z  Zhang L  Mei X  Lin B 《Electrophoresis》2004,25(17):3032-3039
  相似文献   

14.
In this work, a viscosimeter implemented on a microfluidic chip is presented. The physical principle of this system is to use laminar parallel flows in a microfluidic channel. The fluid to be studied flows side by side with a reference fluid of known viscosity. By using optical microscopy, the shape of the interface between both fluids can be determined. Knowing the flow rates of the two liquids and the geometrical features of the channel, the mean shear rate sustained by the fluid and its viscosity can thus be computed. Accurate and precise measurements of the viscosity as a function of the shear rate can be made using less than 300 microL of fluid. Several complex fluids are tested with viscosities ranging from 10(-)(3) to 70 Pa.s.  相似文献   

15.
综述了近年来化学发光检测在微流控芯片中的应用.指出微流控芯片(又称为"芯片实验室"或者"微型全分析系统")因具有小型化、集成化和自动化等特点而在近20年来日益受到关注,而化学发光检测具有仪器结构简单、背景噪音低、操作和维护成本低等优点,非常适合用作微流控芯片的检测手段.  相似文献   

16.
A combined detection system involving simultaneous LIF and contacfless-conductometric measurements at the same place of the microfluidic chip was described. The LIF measurement was designed according to the confocal principle and a moveable contactless-conduetivity detector was used in C^4D. Both measurements were mutually independent and advantageous in analyses of mixtures. Various experimental parameters affecting the response were examined and optimized. The performances were demonstrated by simultaneous detection of Rhodamine B. And the results showed that the combined detection system could be used sensitively and reliably.  相似文献   

17.
Moon H  Wheeler AR  Garrell RL  Loo JA  Kim CJ 《Lab on a chip》2006,6(9):1213-1219
To realize multiplexed sample preparation on a digital microfluidic chip for high-throughput Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), several fluidic functions need to be integrated. These include the generation of multiple droplets from a reservoir and parallel in-line sample purification. In this paper, we develop two critical new functions in handling protein solutions and standard proteomic reagents with electrowetting-on-dielectric (EWOD) actuation, leading to an integrated chip for multiplexed sample preparation for MALDI-MS. The first is a voltage sequence designed to generate a series of droplets from each of the three reservoirs--proteomic sample, rinsing fluid, and MALDI reagents. It is the first time that proteomic reagents have been dispensed using EWOD in an air (as opposed to oil) environment. The second is a box-in-box electrode pattern developed to allow droplet passing over dried sample spots, making the process of in-line sample purification robust for parallel processing. As a result, parallel processing of multiple sample droplets is demonstrated on the integrated EWOD-MALDI-MS chip, an important step towards high-throughput MALDI-MS. The MS results, collected directly from the integrated devices, are of good quality, suggesting that the tedious process of sample preparation can be automated on-chip for MALDI-MS applications as well as other high-throughput proteomics applications.  相似文献   

18.
Liu C  Mo YY  Chen ZG  Li X  Li OL  Zhou X 《Analytica chimica acta》2008,621(2):171-177
A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K+, Na+, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na+, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02 μmol L−1, 0.05 μmol L−1, 0.16 μmol L−1, 0.15 μmol L−1, 0.12 μmol L−1 respectively, and the limits of detection (LOD) of CCD achieved 0.58 μmol L−1 and 0.39 μmol L−1 for K+ and Na+ respectively.  相似文献   

19.
A novel multi-channel poly(methyl methacrylate) (PMMA) microfluidic biosensor with interdigitated ultramicroelectrode arrays (IDUAs) for electrochemical detection was developed. The focus of the development was a simple fabrication procedure and the realization of a reliable large IDUA that can provide detection simultaneously to several microchannels. As proof of concept, five microchannels are positioned over a large single IDUA where the channels are parallel with the length of the electrode finger. The IDUAs were fabricated on the PMMA cover piece and bonded to a PMMA substrate containing the microfluidic channels using UV/ozone-assisted thermal bonding. Conditions of device fabrication were optimized realizing a rugged large IDUA within a bonded PMMA device. Gold adhesion to the PMMA, protective coatings, and pressure during bonding were optimized. Its electrochemical performance was studied using amperometric detection of potassium ferri and ferro hexacyanide. Cumulative signals within the same chip showed very good linearity over a range of 0–38 μM (R 2?=?0.98) and a limit of detection of 3.48 μM. The bonding of the device was optimized so that no cross talk between the channels was observed which otherwise would have resulted in unreliable electrochemical responses. The highly reproducible signals achieved were comparable to those obtained with separate single-channel devices. Subsequently, the multi-channel microfluidic chip was applied to a model bioanalytical detection strategy, i.e., the quantification of specific nucleic acid sequences using a sandwich approach. Here, probe-coated paramagnetic beads and probe-tagged liposomes entrapping ferri/ferro hexacyanide as the redox marker were used to bind to a single-stranded DNA sequence. Flow rates of the non-ionic detergent n-octyl-β-d-glucopyranoside for liposome lysis were optimized, and the detection of the target sequences was carried out coulometrically within 250 s and with a limit of detection of 12.5 μM. The robustness of the design and the reliability of the results obtained in comparison to previously published single-channel designs suggest that the multi-channel device offers an excellent opportunity for bioanalytical applications that require multianalyte detection and high-throughput assays.
Figure
Multi-channel microfluidic biosensor with integrated IDUAs for a sandwich nucleic acid hybridization assay  相似文献   

20.
Revermann T  Götz S  Karst U 《Electrophoresis》2007,28(7):1154-1160
A microchip CE-based method for the quantification of the thiols mercaptoethanoic acid (MAA) and 2-mercaptopropionic acid (2-MPA) in depilatory cream and cold wave lotions was developed. The thiols were first derivatized with the fluorogenic reagent ammonium-7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate (SBD-F). The derivatives were separated within only 20 s by microchip CE and detected by their fluorescence. Conventional CE with diode array detection and LC with fluorescence detection were used for validation. The internal standard 3-mercaptopropionic acid (3-MPA) provided RSDs of multiple injections of only 4% or less for the MCE approach. LOD is 2 microM, LOQ 6 microM, and the linear range comprises nearly three decades of concentration starting at the LOQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号