首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigate the electronic transport properties for a molecular device model constructed by a phenylene ethynylene oligomer molecular with different side groups embedding in a carbon chain between two graphene electrodes. Using the first-principles method, the unusual dual conductance, negative differential resistance (NDR) behavior with large peak to valley ratio, and obvious rectifying performance are numerically observed in such proposed molecular device. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals (MOs) as well as transmission coefficients under various external voltage biases gives an inside view of the observed results, which suggests that the dual conductance behavior and rectifying performance are due to the asymmetry distribution of the frontier MOs as well as the corresponding coupling between the molecule and electrodes. But the NDR behavior comes from the conduction orbital being suppressed at certain bias. Interestingly, the conduction properties can be tuned by introducing side groups to the molecule and the rectification as well as the NDR behavior (peak to valley ratio) can be improved by adding different side groups in the device model.  相似文献   

2.
Using density functional calculations, we investigate the geometries, electronic structures and magnetic properties of hexagonal BN sheets with 3d transition metal (TM) and nonmetal atoms embedded in three types of vacancies: V(B), V(N), and V(B+N). We show that some embedded configurations, except TM atoms in V(N) vacancy, are stable in BN sheets and yield interesting phenomena. For instance, the band gaps and magnetic moments of BN sheets can be tuned depending on the embedded dopant species and vacancy type. In particular, embedment such as Cr in V(B+N), Co in V(B), and Ni in V(B) leads to half-metallic BN sheets interesting for spin filter applications. From the investigation of Mn-chain (C(Mn)) embedments, a regular 1D structure can be formed in BN sheets as an electron waveguide, a metal nanometre wire with a single atom thickness.  相似文献   

3.
A new molecular diode based on biphenyl-co-bispyrimidine was synthesized and showed a pronounced rectifying effect. Further studies indicate that protonation on the nitrogen atoms of the diode molecule by strong acids can reversibly alter the rectifying direction. This phenomenon can be envisioned as a starting point for single molecule detection devices.  相似文献   

4.
单原子催化剂由于能最大限度地利用贵金属以及其独特的催化性能而引起了人们的兴趣.基于其表面原子性质,CeO2是稳定单金属原子最常用的载体之一.一旦金属含量超过其负载的载体容量,就会形成金属纳米粒子,因而许多单原子催化剂的金属含量受限.目前,还没有直接的测量方法来确定载体稳定单个原子的容量.本文开发了一种基于纳米颗粒的技术,即通过将Ru纳米颗粒重新分散成单个原子,并利用Ru单原子和纳米颗粒在CO2加氢反应中的不同催化性能,从而确定该容量.该方法避免了湿浸初期反离子对金属负载的影响,最终可应用于多种不同的金属.结果表明,该技术可跟踪氧空位浓度和表面氧含量的变化趋势,有望成为一种定量测定载体单原子稳定容量的新方法.  相似文献   

5.
We present a theoretical study on a series of novel organometallic sandwich molecular wires (SMWs), which are constructed with alternating iron atoms and cyclopentadienyl (Cp) rings, using DFT and nonequilibrium Green's function techniques. It is found that that the SMWs are stable, flexible structures having half-metallic (HM) properties with 100% negative spin polarization near the Fermi level in the ground state. Some SMWs of finite size show a nearly perfect spin filter effect (SFE) when coupled between ferromagnetic electrodes. Moreover, their I-V curves exhibit negative differential resistance (NDR), which is essential for certain electronic applications. The SMWs are the first linear molecules with HM, high SFE, and NDR and can be easily synthesized. In addition, we also analyze the underlying mechanisms via the transmission spectra and spin-dependent calculations. These findings strongly suggest that the SMWs are promising materials for application in molecular electronics.  相似文献   

6.
Considerable efforts have been devoted to achieving stable acene derivatives for electronic applications; however, the instability is still a major issue for such derivatives. To achieve higher stability with minimum structural change, CC units in the acenes were replaced with isoelectronic BN units to produce a novel BN‐embedded tetrabenzopentacene (BNTBP). BNTBP, with a planar structure, is highly stable to air, moisture, light, and heat. Compared with its carbon analogue tetrabenzopentacene (TBP), BN embedment lowered the highest occupied molecular orbital (HOMO) energy level of BNTBP, changed the orbital distribution, and decreased the HOMO orbital coefficients at the central carbon atoms, which stabilize BNTBP molecules upon exposure to oxygen and sunlight. The single‐crystal microribbons of BNTBP exhibited good performance in field‐effect transistors (FETs). The high stability and good mobility of BNTBP indicates that BN incorporation is an effective approach to afford stable large‐sized acenes with desired properties.  相似文献   

7.
An efficient approach is presented for performing efficient molecular dynamics simulations of solute aggregation in crystalline solids. The method dynamically divides the total simulation space into "active" regions centered about each minority species, in which regular molecular dynamics is performed. The number, size, and shape of these regions is updated periodically based on the distribution of solute atoms within the overall simulation cell. The remainder of the system is essentially static except for periodic rescaling of the entire simulation cell in order to balance the pressure between the isolated molecular dynamics regions. The method is shown to be accurate and robust for the Environment-Dependant Interatomic Potential (EDIP) for silicon and an Embedded Atom Method potential (EAM) for copper. Several tests are performed beginning with the diffusion of a single vacancy all the way to large-scale simulations of vacancy clustering. In both material systems, the predicted evolutions agree closely with the results of standard molecular dynamics simulations. Computationally, the method is demonstrated to scale almost linearly with the concentration of solute atoms, but is essentially independent of the total system size. This scaling behavior allows for the full dynamical simulation of aggregation under conditions that are more experimentally realizable than would be possible with standard molecular dynamics.  相似文献   

8.
9.
The electron-transport properties of various substituted molecules based on the thiol-ended thiophene dimer (2Th1DT) are investigated through density functional theory (DFT) combined with nonequilibrium Green's function (NEGF) method. The current-voltage (I-V) curves of all the Au/2Th1DT/Au systems in this work display similar steplike features, while their equilibrium conductances show a large difference and some of these I-V curves are asymmetric distinctly. The results reveal the dependence of conductance on the energy level of the substituted 2Th1DT molecules. Rectification ratios are computed to examine the asymmetric properties of the I-V curves. The rectifying behavior in the 2Th1DT molecule containing the amino group close to the molecular end is more prominent than that in the other molecules. The rectifying behavior is analyzed through transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. Slight negative differential resistance (NDR) can be observed in some of the systems. The electron-transport properties of 2Th1DT molecules containing different heteroatoms are also investigated. The results indicate that the current in heteroatom-containing molecules is larger than that in their pristine analogues, and lighter heteroatoms are more favorable than heavier heteroatoms for electron transport of the thiophene dimer.  相似文献   

10.
Graphdiyne, consisting of sp- and sp(2)-hybridized carbon atoms, is a new member of carbon allotropes which has a natural band gap ~1.0 eV. Here, we report our first-principles calculations on the stable configurations and electronic structures of graphdiyne doped with boron-nitrogen (BN) units. We show that BN unit prefers to replace the sp-hybridized carbon atoms in the chain at a low doping rate, forming linear BN atomic chains between carbon hexagons. At a high doping rate, BN units replace first the carbon atoms in the hexagons and then those in the chains. A comparison study indicates that these substitution reactions may be easier to occur than those on graphene which composes purely of sp(2)-hybridized carbon atoms. With the increase of BN component, the band gap increases first gradually and then abruptly, corresponding to the transition between the two substitution motifs. The direct-band gap feature is intact in these BN-doped graphdiyne regardless the doping rate. A simple tight-binding model is proposed to interpret the origin of the band gap opening behaviors. Such wide-range band gap modification in graphdiyne may find applications in nanoscaled electronic devices and solar cells.  相似文献   

11.
Using density functional theory (DFT) combined with the first-principles nonequilibrium Green's function (NEGF), we investigated the electron-transport properties and rectifying behaviors of several molecular junctions based on the bis-2-(5-ethynylthienyl)ethyne (BETE) molecule. To examine the roles of different rectification factors, asymmetric electrode-molecule contacts and donor-acceptor substituent groups were introduced into the BETE-based molecular junction. The asymmetric current-voltage characteristics were obtained for the molecular junctions containing asymmetric contacts and donor-acceptor groups. In our models, the computed rectification ratios show that the mode of electrode-molecule contacts plays a crucial role in rectification and that the rectifying effect is not enhanced significantly by introducing the additional donor-acceptor components for the molecular rectifier with asymmetric electrode-molecule contacts. The current-voltage characteristics and rectifying behaviors are discussed in terms of transmission spectra, molecular projected self-consistent Hamiltonian (MPSH) states, and energy levels of MPSH states.  相似文献   

12.
Adsorption of transition atoms on a (8,0) zigzag single-walled boron nitride (BN) nanotube has been investigated using density-functional theory methods. Main focuses have been placed on configurations corresponding to the located minima of the adsorbates, the corresponding binding energies, and the modified electronic properties of the BN nanotubes due to the adsorbates. We have systemically studied a series of metal adsorbates including all 3d transition-metal elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and two group-VIIIA transition-metal elements (Pd and Pt). We found that many transition-metal atoms can be chemically adsorbed on the outer surface of the BN nanotubes and that the adsorption process is typically exothermic. Upon adsorption, the binding energies of the Sc, Ti, Ni, Pd, and Pt atoms are relatively high (>1.0 eV), while those of V, Fe, and Co atoms are modest, ranging from 0.62 to 0.92 eV. Mn atom forms a weak bond with the BN nanotube, while Zn atom cannot be chemically adsorbed on the BN nanotube. In most cases, the adsorption of transition-metal atoms can induce certain impurity states within the band gap of the pristine BN nanotube, thereby reducing the band gap. Most metal-adsorbed BN nanotubes exhibit nonzero magnetic moments, contributed largely by the transition-metal atoms.  相似文献   

13.
The structural properties, the formation and migration energies of a single vacancy migrating intralayer and interlayer in the CuAu‐terminated (110) surface of Cu3Au ordered alloy have been calculated and discussed by using the modified analytical embedded‐atom method (MAEAM) and molecular dynamics (MD) methods. The surface layer exhibits rippling that the Au atoms are raised above Cu atoms about 0.117 Å in the topmost layer. The displacements of the topmost two layers are comparatively larger, while the third layer relaxes slightly and there are no changes in the nether layers. From energy minimization, the vacancy is most likely to be formed in the first layer (1L), especially on the Au site. The surface vacancy shows the smallest formation energy compared to the interlayer and bulk vacancies, while the corresponding value converges after the fifth layer (5L). For Cu vacancy originally sited in the second layer (2L) and migrated intralayer and interlayer, the diffusion without causing the local disorder is the most favorable, and the vacancy tends to migrate to the topmost layer. In the topmost layer of the CuAu‐terminated (110) surface, the circularity path is preferred over the beeline path. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.  相似文献   

15.
We find experimentally that a system comprised of nanosized features no longer shows fixed steady characteristics as in solid-state devices, and instead, because of the chemistry of the nanostructure, the thermal motion of the atoms, and the external fields, the nanosized system shows intermittent behavior, that is, transient behavior. This transient response for nanosized systems might misguide conclusions regarding observed negative differential resistance (NDR) which is due to the collective nuclei rearrangements to more stable conformations under the presence of an applied field yielding, in many cases, resonances between conformations that can sustain during the steady-state period. This NDR yields peculiar behavior that needs to be considered to design molecular and nanoelectronic devices. In addition, the commonly sharp contrast between transient and steady responses blurs at the nanoscale. In nanosize systems, the time constants or transient response times depend on the velocity of the rearrangements of the atoms in the system or molecule.  相似文献   

16.
We report a first-principles study of electrical transport and negative differential resistance (NDR) in a single molecular conductor consisting of a borazine ring sandwiched between two Au(100) electrodes with a finite cross section. The projected density of states (PDOS) and transmission coefficients under various external voltage biases are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to NDR. Therefore, we propose that one origin of NDR in molecular devices is caused by the characteristics of both the molecule and the electrodes as well as their cooperation, not necessarily only by the inherent properties of certain species of molecules themselves. The changes of charge state of the molecule have minor effects on NDR in this device because the Mulliken population analysis shows that electron occupation variation on the molecule is very small when different external biases are applied.  相似文献   

17.
We present the electron transport of pyridyl aza[60]fulleroid oligomers, abbreviated as C(60)NPy, which is based on the donor-barrier-acceptor (D-sigma-A) architecture, at a single molecular scale using scanning tunneling microscopy. A rectifying effect is observed in the current-voltage characteristics. The theoretical calculation shows that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are well localized either on the Py moiety (donor) or on the C(60) moiety (acceptor), indicating the sigma-bridge decouples the LUMO and the HOMO of the donor and the acceptor, respectively. This structure accords well with the unimolecular rectifying model proposed by Aviram and Ratner [Chem. Phys. Lett. 1974, 29, 277]. The mechanism of the rectifying effect is understood by analyzing in detail the electron transport through energy levels of the donor and the acceptor of the C(60)NPy molecules. By directly comparing the experimental conductance peaks and the calculated density of states of the C(60)NPy, we find that the observed rectification is attributed to the asymmetric positioning of the LUMOs and the HOMOs of both sides of the acceptor and the donor of the C(60)NPy molecules with respect to the Fermi level of the electrodes. When a main voltage drop is over the molecule-electrode vacuum junction but a small fraction over the molecule itself, the shift of the energy levels between the donor and the acceptor will be small. This behavior deviates from the original proposal by Aviram and Ratner in which a large shift of the energy level is expected.  相似文献   

18.
Clusters with an exact number of atoms are of particular interest in catalysis. Their catalytic behaviors can be potentially altered with the addition or removal of a single atom. Now the effects of doping with a single foreign atom (Au, Pd, and Pt) into the core of an Ag cluster with 25 atoms on the catalytic properties are explored, where the foreign atom is protected by 24 Ag atoms (Au@Ag24, Pd@Ag24, and Pt@Ag24). The central doping of a single atom into the Ag25 cluster has a substantial influence on the catalytic performance in the carboxylation reaction of CO2 with terminal alkyne through C?C bond formation to produce propiolic acid. These studies reveal that the catalytic properties of the cluster catalysts can be dramatically changed with the subtle alteration by a single atom away from the active sites.  相似文献   

19.
The electron transport properties of various molecular junctions based on the thiol-ended oligosilane are investigated through density functional theory combined with non-equilibrium Green's function formalism. Our calculations show that oligosilanes doped by the phenyl and-C10H6 groups demonstrate better rectifying effect and their rectification ratios are up to 15.41 and 65.13 for their molecular junctions. The current-voltage(I-V) curves of all the Au/ modified oligosilane/Au systems in this work are illustrated by frontier molecular orbitals, transmission spectra and density of states under zero bias. And their rectifying behaviors are analyzed through transmission spectra.  相似文献   

20.
The cell parameters, bulk moduli and electronic densities-of-states (DOS) of pure and vacancy defect AlN were computed using generalized-gradient approximation (GGA) and hybrid functional (B3LYP) computational methods within both plane wave-pseudopotential and localized Gaussian basis set approaches. All of the methods studied yielded cell parameters and bulk moduli in reasonable agreement with experiment. The B3LYP functional was also found to predict an optical band gap in excellent agreement with experiment. These methods were subsequently applied to the calculation of the geometry, defect state positions and formation energies of the cation (V(Al)) and anion (V(N)) single vacancy defects. For the V(Al) defect, the plane wave-pseudopotential predicted a significant retraction of the neighboring N away from the vacancy, while for the V(N) defect, only slight relaxations of the surrounding Al atoms towards the vacancy were predicted. For the computed DOS of both vacancy defects, the GGA methods yielded similar features and defect level positions relative to the valence band maximum, while the B3LYP method predicted higher separations between the defect levels and the valence and conduction bands, leading to higher energy occupied defect levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号