首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The optical and thermophysical parameters of starch films (obtained by extrusion) were determined in order to obtain input data for photothermal studies of water migration in such films. The optical spectra, sorption isotherm, and volume change were measured for samples equilibrated at different levels of relative humidities. The photopyroelectric method was used to measure thermal parameters as a function of water content and temperature. The thermal conductivity, thermal effusivity, and volume specific heat all increase with water content while the thermal diffusivity remains almost constant. The temperature behaviour of the thermal parameters in the -15+70 °C temperature range was measured for samples with different water contents. No phase transition was observed at 0 °C, which proves either that water in the starch matrix is not in a free form, or the fact that water dissolved other particles shifting the melting point to a lower temperature. Received: 1 June 1999 / Final version: 13 March 2000 / Published online: 7 June 2000  相似文献   

2.
Simultaneous determination of thermophysical properties of YBa2Cu3O7?x thin film has been carried out using the optical pump–probe method. The thermal diffusivity and thermal effusivity were analyzed from the same picosecond thermoreflectance data. The thermal conductivity and specific heat were then derived from the measured values of the thermal diffusivity and effusivity. The thermal diffusivity, thermal effusivity and thermal conductivity obtained compared favorably with those reported in the literature.  相似文献   

3.
Thermal properties of a liquid resin were studied by thermal lens spectrometry (TLS) and open photoacoustic cell (OPC), respectively. In the case of the TLS technique, the two mismatched mode experimental configuration was used with a He–Ne laser, as a probe beam and an Argon laser was used as the excitation source. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data in order to obtain the thermal diffusivity (α) of the resin. On the other hand, the sample thermal effusivity (e) was obtained by using the OPC technique. In this technique, an Argon laser was used as the excitation source and was operated at 514 nm with an output power of 30 mW. From the obtained thermal diffusivity (α) and thermal effusivity (e) values, the thermal conductivity (k) and specific heat capacity per unit volume (ρc) of resin were calculated through the relationships k = e(α)1/2 and ρc = e/(α)1/2. The obtained thermal parameters were compared with the thermal parameters of the literature. To our knowledge, the thermal characterization of resin has not been reported until now. The present study has applications in laser stereo-lithography to manufacture 3D printing pieces.  相似文献   

4.
Thermal wave characterization of thin films used in industrial applications can be a useful tool, not just to get information on the films' thermal properties, but to get information on structural-physical parameters, e.g. crystalline structure and surface roughness, and on the film deposition conditions, since the thermal film properties are directly related to the structural-physical parameters and to the deposition conditions. Different sets of TiCXOY thin films, deposited by reactive magnetron sputtering on steel, have been prepared, changing only one deposition parameter at a time. Here, the effect of the oxygen flow on the thermal film properties is studied. The thermal waves have been measured by modulated IR radiometry, and the phase lag data have been interpreted using an Extremum method by which the thermal coating parameters are directly related to the values and modulation frequencies of the relative extrema of the inverse calibrated thermal wave phases. Structural/morphological characterization has been done using X-ray diffraction (XRD) and atomic force microscopy (AFM). The characterization of the films also includes thickness, hardness, and electric resistivity measurements. The results obtained so far indicate strong correlations between the thermal diffusivity and conductivity, on the one hand, and the oxygen flow on the other hand.  相似文献   

5.
《Current Applied Physics》2014,14(9):1318-1324
Measurements of the temperature dependence of refractive index of ZnO thin films and thermal diffusivity using photothermal deflection technique are presented. Thin film thickness and surface homogeneity were found to be the effective parameters on optical and thermal properties of the thin films. High refractive index gradient with temperature was found for films of a nonuniform distribution and gathered in clusters, and a high predicted value for thermal diffusivity. Optical properties of the thin films revealed that films with disorder in the deposition and gathered clusters showed poor transmittance in visible region with a pronounced peak in the near IR, and also a reduction in the band gap. A detailed parametric analysis using analytical solution of one-dimensional heat equation had been performed. A discontinuity in the temperature elevation at the ZnO-glass interface was found.  相似文献   

6.
Conducting polymers are electrochemically polymerized at platinum electrode substrates. The thickness, porosity and surface morphology of the resulting films are controlled by the charge passing during electropolymerization step and the synthesis conditions. The polymer films are modified by electrochemically depositing platinum particles. The technique of deposition depends on applying a programmed potential pulse at the polymer film from a solution containing platinum complex that resulted in the formation of platinum particles of controlled size and distribution. The effect of changing the size of platinum particles and polymer film thickness on the voltammetric behavior of the resulting hybrid material showed noticeable changes in the electro-catalytic current in acid medium. On the other hand, the electrochemical impedance spectroscopy experiments showed that diffusion and charge-transfer rate increased in the order: unmodified polymer films, thin polymer films containing small size/amount of platinum particles and relatively thick polymer films containing larger size/amount of platinum particles. The morphology of polymer films, size and distribution of platinum particles in the film were studied by scanning electron microscopy. The presence of platinum and its distribution over the film surface was confirmed from the X-ray dispersive analysis and surface mapping. The hybrid materials are good candidates for the application in devices for exchange of hydrogen ions.  相似文献   

7.
《Physics letters. A》2020,384(29):126738
Tris(2-phenylpyridinato-C2, N] Iridium III, Ir(ppy)3, is experimentally investigated as a novel deposited thin film. Ir(ppy)3 thin films were fabricated by the electron beam evaporator technique. X-ray diffraction (XRD) of Ir(ppy)3 powder is investigated to be polycrystalline with triclinic crystal. XRD pattern of Ir(ppy)3 film and the annealed film is analyzed, and the average of crystallite size slightly increases with thermal annealing from 14 to 40 nm. The linear optical parameters were estimated and found that the annealing effect on lattice dielectric constants, dispersion energy, oscillator energy, and the ratio of carrier concentration to its effective mass. The Urbach energy and optical energy gap are estimated at different thermal annealing. On the other hand, dielectric constants and optical conductivity were estimated and found that the annealing plays a remarkable role in the increasing of their values. The calculated values of third-order susceptibility were increased by thermal annealing. Thus, the thermal annealing can be utilized as a tool to modify the optical properties of Ir(ppy)3 films, which can be used in many important applications such as high capacity communication network.  相似文献   

8.
This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 mol L-1 H2SO4 was carried out to the starch dispersion for the preparation of SNPs. The synthesized SNPs were blended uniformly within the PU matrix using ultrasonic irradiation (20 kHz, 220 W pulse mode). The temperature was kept constant during the synthesis (4 °C). The nanocomposite coating films were made with a regulated thickness using the casting method. The effect of SNP content (wt%) in nanocomposite coating films on various properties such as morphology, water vapour permeability (WVP), glass transition temperature (Tg), microbial barrier, and mechanical properties was studied. The addition of SNP to the PU matrix increased the roughness of the surface, and Tg by 7 °C, lowering WVP by 60% compared to the PU film without the addition of SNP. As the SNP concentration was increased, the opacity of the film increased. The reinforcement of the SNP in the PU matrix enhanced the microbial barrier of the film by 99.9%, with the optimal content of SNP being 5%. Improvement in the toughness and barrier properties was observed with an increase in the SNP content of the film.  相似文献   

9.
Based on thermoacoustic theory, a coupled thermal-mechanical model for graphene films is established, and the analytical solutions for thermal-acoustic radiation from a graphene thin film are obtained. The sound pressure of the graphene film generator on different substrates is measured, and the measurement data is compared with the theoretical results. The frequency response from the experimental results is consistent with the theoretical ones, while the measured values are slightly lower than the theoretical ones. Therefore, the accuracy of the proposed theoretical model is verified. It is shown that thermal-acoustic radiation from a graphene thin film reveals a wide frequency response. The sound pressure level increases with the frequency in the low frequency range, while the sound pressure varies smoothly with frequency in the high frequency range. Thus it can be used as excellent thermal generator. When the thermal effusivity of the substrate is smaller, then the sound pressure of grapheme films will be higher.Furthermore, the sound pressure decreases with the increase of heat capacity per unit area of grapheme films. Results will contribute to the mechanism of graphene films generator and its applications in the design of loudspeaker and other related areas.  相似文献   

10.
多晶硅薄膜低温生长中晶粒大小的控制   总被引:9,自引:0,他引:9       下载免费PDF全文
以SiCl4H2为气源,用等离子体增强化学气相沉积(PECVD)方法低温快速沉积多晶硅薄膜.实验发现,在多晶硅薄膜的生长过程中,气相空间各种活性基团的相对浓度是影响晶粒大小的重要因素,随功率、H2/SiCl4流量比的减小和反应室气压的增加,晶粒增大.而各种活性基团的相对浓度依赖于PECVD工艺参数,通过工艺参数的改变,分析生长过程中空间各种活性基团相对浓度的变化,指出“气相结晶”过程是晶粒长大的一个重要因素. 关键词: 气相结晶 多晶硅薄膜 晶粒生长 SiCl4  相似文献   

11.
For a film-on-substrate system, in the case of thin films with lower thermal diffusivities compared to substrates, the phase characterization of the photothermal signals is analyzed. Moreover, the numerical estimations of multiparameter are performed, which show the feasibility of simultaneous determination of the thermal diffusivities of the film and the substrate, as well as the thermal interface resistance of the film/substrate. Because the thermal diffusivity of the thin-film and the thermal interface resistance may be highly correlated, a genetic algorithm is used as an estimation method for the determination of the thermal properties of thin films with low thermal diffusivity.  相似文献   

12.
考虑基底热传导的石墨烯薄膜热声理论   总被引:2,自引:0,他引:2       下载免费PDF全文
主要基于热声效应对石墨烯薄膜发声进行理论研究。首先建立了石墨烯薄膜耦合热振动模型,推导出了石墨烯薄膜发声器的声压表达式。在此基础上,进行了不同基底石墨烯薄膜发声器的声压测试,并将测试值与理论计算结果对比,二者随频率变化趋势基本吻合,测试值略低于理论值,验证了推导出的声压表达式的正确性。研究表明石墨烯薄膜发声器有很宽的频域响应,在低频段声压级随频率增大而增大,在高频段响应平稳,具有作为优秀的热致发声器的潜力。基底材料蓄热系数越小,石墨烯薄膜的声压值越大;声压级随薄膜热容量的增大而减小。研究结果对于石墨烯的发声机制探索及其在扬声器设计等方面的应用具有指导意义。   相似文献   

13.
Thin films of Ge–As–Se chalcogenide glasses have been deposited by thermal evaporation from bulk material and submitted to thermal treatments. The linear refractive index and optical band-gap for as-deposited and annealed films have been analyzed as function of the deposition parameters, chemical composition and mean coordination number (MCN). The chemical composition of the films was found to be directly affected by deposition rate, with low rates producing films with elevated Ge and reduced As content, whilst at high rates the Ge content was generally reduced and As levels increased compared with the bulk starting material. As a result films with close to the same stoichiometry as the bulk glass could be obtained by choosing appropriate deposition conditions. As-deposited films with MCN in between 2.44 and 2.55 showed refractive indices and optical band-gaps very close to those of the bulk glass whereas outside this range the film indices were higher and the optical gaps lower than those of the bulk glass. Upon annealing at close to their glass transition temperature, high MCN films evolved such that their indices and band-gaps approached the bulk glass values whereas at low MCN films resulted in no changes to the film properties.  相似文献   

14.
Thin films of 4-tricyanovinyl-N,N-diethylaniline (TCVA) were prepared by thermal evaporation technique. The spectral and the optical parameters have been investigated by using the spectrophotometric measurements of both transmittance and reflectance at normal incidence of light in the wavelength range 200–2500 nm. The effect of γ-irradiation on the optical parameters was investigated. It was observed that the increase in γ-irradiation dose caused an increase in the value of absorption index and a shift in the spectrum towards higher wavelengths. Therefore, the value of the optical band gap has decreased from 1.45 eV for as-deposited film to 1.39 eV for film exposed to γ-ray dose of 150 kGy and Urbach tail increased. On the other hand, the dispersion parameters of TCVA films were increased with the increase of the irradiation dose.  相似文献   

15.
An in situ, noncontact, photothermal displacement interferometer for performing thermal diffusivity measurements on bulk and thin-film materials has been developed. Localized transient surface motion is generated through photothermoelastic coupling of a pulsed, heating laser beam to the sample under investigation. The maximum surface displacement is found to be linearly dependent on the laser power while the proportionality is a function of the thermal diffusivity. Both thin-film conductivity and film/substrate interface thermal resistance are derived from the measured, effective thermal conductivity by employing simple heat-flow analysis. Wedge-shaped Si films, vacuum deposited on single crystal Si wafers are studied with this technique. A sample with oxide layer removed by ion bombardment of the wafer surface prior to film deposition shows the same film conductivity as a sample film deposited on an as-cast wafer, while the uncleaned sample exhibits higher interface thermal resistance. It is found that the thin-film thermal conductivity is somewhat smaller than the bulk value. However, the existence of an interface thermal resistance, when combined with film thermal conductivity, can result in an effective thermal conductivity as low as two orders of magnitude lower than the bulk value.Currently supported by the LLE fellowship  相似文献   

16.
The photoacoustic model of multilayer with a strong-absorbing surface layer is developed. The phase of ph0toacoustie signal is measured as a function of modulated frequency using apparatus totally controlled by a computer system. The thermal diffusivity, effusivity as well as thickness of several buried layers are obtained independently through the best fit of experimental data according to the theoretical model. The multilayers of thin metal and alloy film are investigated. This method is proved to be valuable particularly in nondestructive examination of subsurface physical properties.  相似文献   

17.
A method of measuring thermal diffusivity of materials at room temperature by photothermal reflection technique is described. An intensity-modulated Ar+ laser beam is used as incident light. The beam is focused to about 1 mm diameter spot and illuminates the sample surface. HgCdTe infrared detector is used to receive photothermal signal. Using this technique, the photothermal signals are experimentally measured as the function of different frequencies. The thermal diffusivities can be obtained by fitting the experimental data. On the other hand, the thermal diffusivities of one-way composite and orthogonal symmetric arranged composites Al2O3/Al are measured in transverse, longitudinal and arbitrary directions. The results show that the diffusivity of one-way material decreases with the increase of the measurement angle; the diffusivity of orthogonally arranged material almost keeps the same when measurement angle changes.  相似文献   

18.
Transient thermal grating method is used to measure the thermal diffusivity of absorbing films deposited on transparent substrates. According to periodically modulated dielectric constant variations and thermoelastic deformations of the thin films caused by the transient thermal gratings, an improved optical diffraction theory is presented. In the experiment, the probing laser beam reflectively diffracted by the thermal grating is measured by a photomultiplier at different grating fringe spaces. The thermal diffusivity of the film can be evaluated by fitting the theoretical calculations of diffraction signals to the experimental measured data. The validity of the method is tested by measuring the thermal diffusivities of absorbing ZnO films deposited on glass substrates.  相似文献   

19.
Bi4Ti3O12 (BIT) films were prepared on Pt/TiO2/SiO2/Si substrates by the sol-gel method. A low electric field was in-situ applied to BIT films during rapid thermal annealing (RTA). It was first found that a bias electric field has great influence on the structure, orientation, and morphology of BIT films at proper temperatures. Under the electric field of very low V/cm, BIT films show highly c-axis-oriented growth with second phase of bismuth oxide at 600 and 650 °C. The possible origin is proposed. On one hand, the electrostatic energy provides an extra driving force and the co-interaction of the electrostatic energy and interface energy promotes the c-axis-oriented growth of the BIT grains. On the other hand, the second phase of bismuth oxide produced during RTA in an electric field also plays an important role in the control of film orientation.  相似文献   

20.
In this paper the first measurement of effective thermal parameters (thermal diffusivity, effusivity, conductivity and heat capacity) of Polymer Dispersed Liquid Crystal (PDLC) composites using the photopyroelectric (PPE) calorimetry is reported. The PPE technique is used in the standard “back” configuration and the cell has been designed for allowing the application of an electric field to the sample. Results show a dependence of the thermal parameters on the applied electric field which is explained by the reorientation of the liquid crystal molecules inside the droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号