首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with an inverse potential problem posed in two dimensional space whose forward problem is governed by a modified Helmholtz equation. The inverse problem consists in the reconstruction of a set of anomalies embedded into a geometrical domain from partial measurements of the associated potential. Since the inverse problem, we are dealing with, is written in the form of an ill-posed boundary value problem, the idea is to rewrite it as a topology optimization problem. In particular, a shape functional is defined to measure the misfit of the solution obtained from the model and the data taken from the partial measurements. This shape functional is minimized with respect to a set of ball-shaped anomalies using the concept of topological derivatives. It means that the shape functional is expanded asymptotically and then truncated up to the desired order term. The resulting expression is trivially minimized with respect to the parameters under consideration which leads to a noniterative second-order reconstruction algorithm. As a result, the reconstruction process becomes very robust with respect to noisy data and independent of any initial guess. Finally, some numerical experiments are presented to show the effectiveness of the proposed reconstruction algorithm.  相似文献   

2.
In this paper, a constant heat transfer coefficient present in a nonlinear Robin‐type boundary condition associated with an elliptic equation is reconstructed uniquely from a single boundary energy measurement. Two types of such boundary energy measurement are considered, and solvability theorems for the solution of the resulting nonlinear inverse problems are provided. Further, one‐dimensional numerical results are presented and discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a noniterative reconstruction method for solving the inverse potential problem is proposed. The forward problem is governed by a modified Helmholtz equation. The inverse problem consists in the reconstruction of a set of anomalies embedded into a geometrical domain from partial or total boundary measurements of the associated potential. Since the inverse problem is written in the form of an ill‐posed boundary value problem, the idea is to rewrite it as a topology optimization problem. In particular, a shape functional measuring the misfit between the solution obtained from the model and the data taken from the boundary measurements is minimized with respect to a set of ball‐shaped anomalies by using the concept of topological derivatives. It means that the shape functional is expanded asymptotically and then truncated up to the desired order term. The resulting truncated expansion is trivially minimized with respect to the parameters under consideration that leads to a noniterative second order reconstruction algorithm. As a result, the reconstruction process becomes very robust with respect to the noisy data and independent of any initial guess. Finally, some numerical experiments are presented showing the capability of the proposed method in reconstructing multiple anomalies of different sizes and shapes by taking into account complete or partial boundary measurements.  相似文献   

4.
This paper is concerned with the inverse electromagnetic scattering by a 2D (impenetrable or penetrable) smooth periodic curve. Precisely, we establish global uniqueness results on the inverse problem of determining the grating profile from the scattered fields corresponding to a countably infinite number of quasiperiodic incident waves. For the case of an impenetrable and partially coated perfectly reflecting grating, we prove that the grating profile and its physical property can be uniquely determined from the scattered field measured above the periodic structure. For the case of a penetrable grating, we show that the periodic interface can be uniquely recovered by the scattered field measured only above the interface. A key ingredient in our proofs is a novel mixed reciprocity relation that is derived in this paper for the periodic structures and seems to be new. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
** Email: mduran{at}ing.puc.cl*** Email: ignacio.muga{at}ucv.cl**** Email: nedelec{at}cmapx.polytechnique.fr In this article, we study the existence and uniqueness of outgoingsolutions for the Helmholtz equation in locally perturbed half-planeswith passive boundary. We establish an explicit outgoing radiationcondition which is somewhat different from the usual Sommerfeld'sone due to the appearance of surface waves. We work with thehelp of Fourier analysis and a half-plane Green's function framework.This is an extended and detailed version of the previous articleDurán et al. (2005, The Helmholtz equation with impedancein a half-plane. C. R. Acad. Sci. Paris, Ser. I, 340, 483–488).  相似文献   

6.
For a hyperbolic wave equation with some parameter λ, we consider the problem of finding the piecewise constant wave propagation speed and a series of parameters in the conjugation condition. Moreover, the shape is assumed unknown of the impulse point source that excites the oscillation process. We prove that, under certain assumptions on the structure of the medium, its sought parameters are determined uniquely from the displacements of points of the boundary given for two different values of λ. We give an algorithm for solving the problem.  相似文献   

7.
We consider the interior inverse scattering problem of recovering the shape and the surface impedance of an impenetrable partially coated cavity from a knowledge of measured scatter waves due to point sources located on a closed curve inside the cavity. First, we prove uniqueness of the inverse problem, namely, we show that both the shape of the cavity and the impedance function on the coated part are uniquely determined from exact data. Then, based on the linear sampling method, we propose an inversion scheme for determining both the shape and the boundary impedance. Finally, we present some numerical examples showing the validity of our method.  相似文献   

8.
The inverse problem considered in this paper is to determine the shape and the impedance of crack from a knowledge of the time-harmonic incident field and the corresponding far field pattern of the scattered waves in two-dimension. The combined single- and double-layer potential is used to approach the scattered waves. As an important feature, this method does not require the solution of $u$ and $\partial u / \partial \nu$ at each iteration. An approximate method is presented and the convergence of this method is proven. Numerical examples are given to show that this method is both accurate and simple to use.  相似文献   

9.
The necessary and sufficient conditions for variationality are obtained from the requirement that a differential two-form be closed. The classical Helmholtz equations are shown to follow from these equations. An application of these results to the case in which one of the functions in these equations is taken to be a Riemannian metric on a curved space is presented.  相似文献   

10.
In this paper, we give a hybrid method to numerically solve the inverse open cavity scattering problem for cavity shape, given the scattered solution on the opening of the cavity. This method is a hybrid between an iterative method and an integral equations method for solving the Cauchy problem. The idea of this hybrid method is simple, the operation is easy, and the computation cost is small. Numerical experiments show the feasibility of this method, even for cases with noise.  相似文献   

11.
We consider the scattering of time‐harmonic acoustic plane waves by a crack buried in a piecewise homogeneous medium. The integral representation for a solution is obtained in the form of potentials by using Green's formula. The density in potentials satisfies the uniquely solvable Fredholm integral equation. Then we obtain the existence and uniqueness of the solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We derive relationships between the shape deformation of an impenetrable obstacle and boundary measurements of scattering fields on the perturbed shape itself. Our derivation is rigorous by using a systematic way, based on layer potential techniques and the field expansion (FE) method (formal derivation). We extend these techniques to derive asymptotic expansions of the Dirichlet-to-Neumann (DNO) and Neumann-to-Dirichlet (NDO) operators in terms of the small perturbations of the obstacle as well as relationships between the shape deformation of an obstacle and boundary measurements of DNO or NDO on the perturbed shape itself. All relationships lead us to very effective algorithms for determining lower order Fourier coefficients of the shape perturbation of the obstacle.  相似文献   

13.
We consider the scattering of an electromagnetic time‐harmonic plane wave by an infinite cylinder having a mixed open crack (or arc) in R2 as the cross section. The crack is made up of two parts, and one of the two parts is (possibly) coated by a material with surface impedance λ. We transform the scattering problem into a system of boundary integral equations by adopting a potential approach, and establish the existence and uniqueness of a weak solution to the system by the Fredholm theory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
For the equation of wave propagation in the half-space ? + 2 + = {(x, y) ∈ ?2 | y > 0} we consider the problem of determining the speed of wave propagation that depends only on the variable y and the shape of a point impulse source on the boundary of the half-space. We show that, under some assumptions on the shape of the source and the structure of the medium, both unknown functions of one variable are uniquely determined by the displacements of boundary points of the medium. We estimate stability of a solution to the problem.  相似文献   

15.
16.
This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.  相似文献   

17.
We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual pressure formulation in the acoustic fluid. The mixed variational formulation in the solid is completed with boundary integral equations relating the Cauchy data of the acoustic problem on the coupling interface. A crucial point in our formulation is the stabilization technique introduced by Hiptmair and coworkers to avoid the well‐known instability issue appearing in the boundary element method treatment of the exterior Helmholtz problem. The main novelty of this formulation, with respect to a previous approach, consists in reducing the computational domain to the solid media and providing a more accurate treatment of the far field effect. We show that the continuous problem is well‐posed and propose a conforming Galerkin method based on the lowest‐order Arnold–Falk–Winther mixed finite element. Finally, we prove that the numerical scheme is convergent with optimal order.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1211–1233, 2014  相似文献   

18.
This paper is concerned with efficient numerical methods for solving the time-dependent scattering and inverse scattering problems of acoustic waves in a locally perturbed half-plane. By symmetric continuation, the scattering problem is reformulated as an equivalent symmetric problem defined in the whole plane. The retarded potential boundary integral equation method is modified to solve the forward problem. Then we consider the inverse scattering problem of determinating the local perturbation from the measured scattered data. The time domain linear sampling method is employed to deal with the inverse problem. The computation schemes proposed in this paper are relatively simple and easy to implement. Several numerical examples are presented to show the effectiveness of the proposed methods.  相似文献   

19.
本文以弹性力学中的摩擦问题为背景,采用多重互易方法(MRM方法),边界元方法,将摩擦问题中的第二类混合变分不等式化解为MRM-边界混合变分不等式,给出了MRM-边界混合变分不等式解的存在唯—性,通过引入变换将原MRM-边界混合变分不等式化解为标准的凸极值问题,采用正则化方法处理后,给出了MRM-边界混合变分不等式的迭代分解方法。文末给出了数值算例。  相似文献   

20.
We consider the impedance boundary-value problem for the Helmholtz equation originated by the problem of wave diffraction by an infinite strip with imperfect conductivity. The two possible different situations of real and complex wave numbers are considered. Bessel potential spaces are used to deal with the problem, and the identification of corresponding operators of single and double layer potentials allow a reformulation of the problem into a system of integral equations. The well-posedness of the problem is obtained for a set of impedance parameters (and wave numbers), after the incorporation of some compatibility conditions on the data. At the end, an improvement of the regularity of the solution is derived for the same set of parameters previously considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号