首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.  相似文献   

2.
The solid polymer electrolyte films based on polyethylene oxide, NaClO4 with dodecyl amine modified montmorillonite as filler, and polyethylene glycol as plasticizer were prepared by a tape casting method. The effect of plasticization on structural, microstructural, and electrical properties of the materials has been investigated. A systematic change in the structural and microstructural properties of plasticized polymer nanocomposite electrolytes (PPNCEs) on addition of plasticizer was observed in our X-ray diffraction pattern and scanning electron microscopy micrographs. Complex impedance analysis technique was used to calculate the electrical properties of the nanocomposites. Addition of plasticizer has resulted in the lowering of the glass transition temperature, effective dissociation of the salt, and enhancement in the electrical conductivity. The maximum value of conductivity obtained was ∼4.4 × 10−6 S cm−1 (on addition of ∼20% plasticizer), which is an order of magnitude higher than that of pure polymer nanocomposite electrolyte films (2.82 × 10−7 S cm−1). The enhancement in conductivity on plasticization was well correlated with the change in other physical properties.  相似文献   

3.
The conductivity of poly(N-vinylimidazole) (PVIM) and its fluoroborate salt (PVIM–HBF4) are reported here. N-vinylimidazole is polymerized by free radical method and PVIM–HBF4 is prepared by acidification of PVIM with HBF4. The polyelectrolyte so formed has been characterized by infrared, hydrogen-1 nuclear magnetic resonance, thermogravimetric analyzer, and differential scanning calorimetry. Frequency and temperature dependence of AC conductivity has been studied to learn about the electrical conduction behavior in the materials. The electrical conductivity of the new material is found to be in the range of 10−5 to 10−6 S cm−1.There is about 102- to 103-fold increase in conductivity of the polyelectrolyte. The material is shown to be a predominantly ionic conductor with t ion ≈ 0.88. Apparent activation energies are found to be 0.397 and 0.250 eV for the polymer and the polyelectrolyte, respectively.  相似文献   

4.
The ZnO filler has been introduced into a solid polymeric electrolyte of polyvinyl chloride (PVC)–ZnO–LiClO4, replacing costly organic filler for conductivity improvement. Ionic conductivity of PVC–ZnO–LiClO4 as a function of ZnO concentration and temperature has been studied. The electrolyte samples were prepared by solution casting technique. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with ZnO concentration and temperature. The temperature dependence on the conductivity of electrolyte was modelled by Arrhenius and Vogel–Tammann–Fulcher equations, respectively. The temperature dependence on the conductivity does not fit in both models. The highest room temperature conductivity of the electrolyte of 3.7 × 10−7 Scm−1 was obtained at 20% by weight of ZnO and that without ZnO filler was found to be 8.8 × 10−10 Scm−1. The conductivity has been improved by 420 times when the ZnO filler was introduced into the PVC–LiClO4 electrolyte system. It was also found that the glass transition temperature of the electrolyte PVC–ZnO–LiClO4 is about the same as PVC–LiClO4. The increase in conductivity of the electrolyte with the ZnO filler was explained in terms of its surface morphology.  相似文献   

5.
Solvent-free films of poly (ethylene oxide)–silver triflate (PEO–AgCF3SO3)/MgO-based nanocomposite polymer electrolytes (PEO)50AgCF3SO3x wt.% MgO (x = 1, 3, 5, 7, and 10) obtained using solution casting technique were found to exhibit an appreciably good complexation of MgO nanofiller within the polymer electrolyte system and non-Debye type of relaxation as revealed by Fourier transform infrared and complex impedance analyses. Optimized filler (5 wt.% MgO) when incorporated into the polymer electrolyte resulted in a maximum electrical conductivity of 2 × 10−6 S cm−1 in conjunction with a silver ionic transference number (t Ag+) of 0.23 at room temperature (298 K). Detailed structural, thermal, and surface morphological investigation indicated a slight reduction in the degree of crystallinity owing to the addition of MgO nanofiller.  相似文献   

6.
The effect of plasticizer and TiO2 nanoparticles on the conductivity, chemical interaction and surface morphology of polymer electrolyte of MG49–EC–LiClO4–TiO2 has been investigated. The electrolyte films were successfully prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by sol-gel process and was added into the MG49–EC–LiClO4 electrolyte system. Alternating current electrochemical impedance spectroscopy was employed to investigate the ionic conductivity of the electrolyte films at 25 °C, and the analysis showed that the addition of TiO2 filler and ethylene carbonate (EC) plasticizer has increased the ionic conductivity of the electrolyte up to its optimum level. The highest conductivity of 1.1 × 10−3 Scm−1 was obtained at 30 wt.% of EC. Fourier transform infrared spectroscopy measurement was employed to study the interactions between lithium ions and oxygen atoms that occurred at carbonyl (C=O) and ether (C-O-C) groups. The scanning electron microscopy micrograph shows that the electrolyte with 30 wt.% EC posses the smoothest surface for which the highest conductivity was obtained.  相似文献   

7.
Tin oxide (SnO2) thin films have been grown on glass substrates using atmospheric pressure chemical vapour deposition (APCVD) method. During the deposition, the substrate temperature was kept at 400°C–500°C. The structural properties, surface morphology and chemical composition of the deposited film were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and Rutherford back scattering (RBS) spectrum. XRD pattern showed that the preferred orientation was (110) having tetragonal structure. The optical properties of the films were studied by measuring the transmittance, absorbance and reflectance spectra between λ = 254 nm to 1400 nm and the optical constants were calculated. Typical SnO2 film transmits ∼ 94% of visible light. The electrical properties of the films were studied using four-probe method and Hall-voltage measurement experiment. The films showed room temperature conductivity in the range 1.08 × 102 to 1.69 × 102 Ω−1cm−1.  相似文献   

8.
Solid polymer electrolytes (SPE) based on poly-(vinyl alcohol) (PVA)0.7 and sodium iodide (NaI)0.3 complexed with sulfuric acid (SA) at different concentrations were prepared using solution casting technique. The structural properties of these electrolyte films were examined by X-ray diffraction (XRD) studies. The XRD data revealed that sulfuric acid disrupt the semi-crystalline nature of (PVA)0.7(NaI)0.3 and convert it into an amorphous phase. The proton conductivity and impedance of the electrolyte were studied with changing sulfuric acid concentration from 0 to 5.1 mol/liter (M). The highest conductivity of (PVA)0.7(NaI)0.3 matrix at room temperature was 10−5 S cm−1 and this increased to 10−3 S cm−1 with doping by 5.1 M sulfuric acid. The electrical conductivity (σ) and dielectric permittivity (ε′) of the solid polymer electrolyte in frequency range (500 Hz–1 MHz) and temperature range (300–400) K were carried out. The electrolyte with the highest electrical conductivity was used in the fabrication of a sodium battery with the configuration Na/SPE/MnO2. The fabricated cells give open circuit voltage of 3.34 V and have an internal resistance of 4.5 kΩ.  相似文献   

9.
The blend-based polymer electrolyte consisting of poly (vinyl chloride) (PVC) and poly (ethylene glycol) (PEG) as host polymers and lithium perchlorate (LiClO4) as the complexing salt was studied. An attempt was made to investigate the effect of TiO2 concentration in the unplasticized PVC–PEG polymer electrolyte system. The XRD and FTIR studies confirm the formation of a polymer–salt complex. The conductivity results indicate that the incorporation of ceramic filler up to a certain concentration (15 wt.%) increases the ionic conductivity and upon further addition the conductivity decreases. The maximum ionic conductivity 0.012 × 10−4 S cm−1 is obtained for PVC–PEG–LiClO4–TiO2 (75–25–5–15) system. Thermal stability of the polymer electrolyte is ascertained from TG/DTA studies.  相似文献   

10.
New Na+ ion conducting composite polymer electrolytes comprising of polyethylene oxide (PEO)-NaClO4 and PEO-NaI complexes dispersed with SnO2 are reported. The results of the studies based on optical microscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infra-red (FTIR) spectroscopy, impedance analysis and mechanical testing are presented and discussed. The electrical conductivity of ≈5·10−5 S·cm−1 at 40 °C was achieved for the dispersion of ≈10 wt.% of SnO2 in both systems. The composition dependence of the conductivity has been well correlated with the variation in glass transition temperature and degree of crystallinity. A substantial enhancement in the mechanical properties of the composite films was observed at the cost of slight decrease in the conductivity at higher concentration of SnO2. The temperature dependence of the conductivity follows apparently the Arrhenius type thermally activated process below and above the melting temperature of PEO. The conductivity of the materials has been found to be strongly humidity dependent. The materials are shown to be ionic with tion>0.9. The electrochemical stability of the materials has been observed to be up to ≈3.2 V for (PEO)25NaClO4+x% SnO2 and is limited to ≈1.9 V for (PEO)25NaI+x% SnO2.  相似文献   

11.
Polyethylene oxide (PEO)–potassium hydroxide (KOH)-based alkaline solid polymer electrolyte films have been prepared by using methanol as solvent. The highest room temperature ionic conductivity of (2.1 ± 0.5) × 10−8 S cm−1 was achieved for the composition of 70 wt% PEO:30 wt% KOH. The addition of plasticizer, ethylene carbonate, propylene carbonate, or polyethylene glycol to the highest conductivity of PEO–KOH system helps to increase the ambient ionic conductivity to the order of 10−6–10−4 S cm−1. The log σ vs 1/T plot of PEO–KOH showed a small conductivity decrease at 50–60 °C range. The small decrease and the hysteresis that occur during the heating–cooling cycle was overcome by the presence of the plasticizer. X-ray diffraction observation supports the conductivity results.  相似文献   

12.
Development and characterisation of polyethylene oxide (PEO)-based nanocomposite polymer electrolytes comprising of (PEO-SiO2): NH4SCN is reported. For synthesis of the said electrolyte, polyethylene oxide has been taken as polymer host and NH4SCN as an ionic charge supplier. Sol–gel-derived silica powder of nano dimension has been used as ceramic filler for development of nanocomposite electrolytes. The maximum conductivity of electrolyte ∼2.0 × 10−6 S/cm is observed for samples containing 30 wt.% silica. The temperature dependence of conductivity seems to follow an Arrhenius-type, thermally activated process over a limited temperature range.  相似文献   

13.
Present p-type ZnO films tend to exhibit high resistivity and low carrier concentration, and they revert to their natural n-type state within days after deposition. One approach to grow higher quality p-type ZnO is by codoping the ZnO during growth. This article describes recent results from the growth and characterization of Zr–N codoped p-type ZnO thin films by pulsed laser deposition (PLD) on (0001) sapphire substrates. For this work, both N-doped and Zr–N codoped p-type ZnO films were grown for comparison purposes at substrate temperatures ranging between 400 to 700 °C and N2O background pressures between 10−5 to 10−2 Torr. The carrier type and conduction were found to be very sensitive to substrate temperature and N2O deposition pressure. P-type conduction was observed for films grown at pressures between 10−3 to 10−2 Torr. The Zr–N codoped ZnO films grown at 550 °C in 1×10−3 Torr of N2O show p-type conduction behavior with a very low resistivity of 0.89 Ω-cm, a carrier concentration of 5.0×1018 cm−3, and a Hall mobility of 1.4 cm2 V−1 s−1. The structure, morphology and optical properties were also evaluated for both N-doped and Zr–N codoped ZnO films.  相似文献   

14.
This paper describes the preparation and conductivity studies of polyindole–ZnO composite polymer electrolyte (CPE) with LiClO4. Polyindole–ZnO-based polymer nanocomposites were prepared by chemical method and characterized by XRD, infrared (IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The IR spectrum confirms the intermolecular interaction between polyindole and ZnO. The significant spectral changes of polyindole and ZnO nancomposites reveal the strong interaction between polyindole and ZnO nanoparticles. The structural morphologies of the ZnO, polyindole, and polyindole–ZnO are obtained from SEM. The TEM image of polyindole nanocomposite shows that ZnO is embedded in polyindole matrix. An enhanced conductivity of 4.405 × 10−7 S cm−1 at 50 °C for the CPE was determined from impedance studies.  相似文献   

15.
A new proton-conductive membrane (PCM) based on poly (vinyl alcohol) and ammonium sulfate (NH4)2SO4 complexed with sulfuric acid and plasticized with ethylene carbonate (EC) at different weight percent were prepared by casting technique. The structural properties of these electrolyte films were examined by XRD studies. The XRD patterns of all the prepared polymer electrolytes reveal the amorphous nature of the films. ac conductivity and dielectric spectra of the electrolyte were studied with changing EC content from weight 0.00 to 0.75 g. A maximum conductivity of 7.3 × 10−5 S cm−1 has been achieved at ambient temperature for PCM containing 0.25 g of ethylene carbonate. The electrical conductivity σ, dielectric constant ε′ and dielectric loss ε″ of PCM in frequency range (100 Hz to 100 KHz), and temperature range (300–400 K) were carried out. Measurement of transference number was carried out to investigate the nature of charge transport in these polymer electrolyte films using Wagner’s polarization technique. Transport number data showed that the charge transport in these polymer electrolyte systems was predominantly due to ions. The electrolyte with the highest electrical conductivity was used in the fabrication of a solid-state electrochemical cell with the configuration (Mg/PCM/PbO2). Various cell parameters ldensity, and current density were determined. The fabricated cells gave capacity of 650 μAh and have an internal resistance of 11.6 kΩ.  相似文献   

16.
A nanoparticle TiO2 solid-state photoelectrochemical cell utilizing as a solid electrolyte of poly(acrylonitrile)–propylene–carbonate–lithium perchlorate (PAN–PC–LiClO4) has been fabricated. The performance of the device has been tested in the dark and under illumination of 100-mW cm−2 light. A nanoparticle TiO2 film was deposited onto indium tin oxide-covered glass substrate by controlled hydrolysis technique assisted with spin-coating technique. The average grain size for the TiO2 film is 76 nm. LiClO4 salt was used as a redox couple. The room temperature conductivity of the electrolyte is 4.2 × 10−4 S cm−1. A graphite electrode was prepared onto a glass slide by electron beam evaporation technique. The device shows the rectification property in the dark and shows the photovoltaic effect under illumination. The best J sc and V oc of the device were 2.82 μA cm−2 and V oc of 0.58 V, respectively, obtained at the conductivity of 4.2 × 10−4 S cm−1 and intensity of 100 mW cm−2. The J sc was improved by about three times by introducing nanoparticle TiO2 and by using a solid electrolyte of PAN–PC–LiClO4 replacing PVC–PC–LiClO4 in the device. The current transport mechanism of the cell is also presented in this paper.  相似文献   

17.
The ionic conductivity of PVC–ENR–LiClO4 (PVC, polyvinyl chloride; ENR, epoxidized natural rubber) as a function of LiClO4 concentration, ENR concentration, temperature, and radiation dose of electron beam cross-linking has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivities were measured using the impedance spectroscopy technique. It was observed that the relationship between the concentration of salt, as well as temperature, and conductivity were linear. The electrolyte conductivity increases with ENR concentration. This relationship was discussed using the number of charge carrier theory. The conductivity–temperature behaviour of the electrolyte is Arrhenian. The conductivity also varies with the radiation dose of the electron beam cross-linking. The highest room temperature conductivity of the electrolyte of 8.5 × 10−7 S/cm was obtained at 30% by weight of LiClO4. The activation energy, E a and pre-exponential factor, σ o, are 1.4 × 10−2 eV and 1.5 × 10−11 S/cm, respectively.  相似文献   

18.
Composite materials used for electrode and electrolyte materials have been intensely studied in view of their advantages such as higher conductivity and better operational performance compared to their single-phase counterparts. The present work aims at studying the electrical and structural characteristics of a new composite electrolyte namely, (PbI2) x  − (Ag2O–Cr2O3)100−x where x = 5, 10, 15, 20, and 25 mol%, respectively, prepared by the melt quenching technique. The room temperature X-ray diffraction spectra revealed certain crystalline phases in the samples. AC conductivity analysis for all the prepared samples was carried out over the frequency range 1 MHz–20 Hz and in the temperature window 297–468 K. The room temperature conductivity values were calculated to be in the order of 10−5–10−3 Scm−1. An Arrhenius dependence of temperature with conductivity was observed, and the activation energies calculated were found to be in the range 0.27–0.31 eV. Furthermore, the total ionic transport number (t i) values obtained for all these indicated the ionic nature of this system. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

19.
Here we report the synthesis, chemical stability, and electrical conductivity of Ti-doped perovskite-type BaCe0.8-x Ti x Y0.2O3-δ (x = 0.05, 0.1, 0.2, and 0.3; BCTY). Samples were synthesized by conventional solid state (ceramic) reaction from corresponding metal salts and oxides at elevated temperature of 1,300–1,500 °C in air. The powder X-ray diffraction confirmed the formation of a simple cubic perovskite-type structure with a lattice constant of a = 4.374(1), 4.377(1), and 4.332(1) ? for x = 0.05, 0.1, and 0.2 members of BCTY, respectively. Like BaCe0.8Y0.2O3-δ (BCY), Ti substituted BCTY was found to be chemically not stable in 100% CO2 and form BaCO3 at elevated temperature. The bulk electrical conductivity of BCTY decreased with increasing Ti content and the x = 0.05 member exhibited the highest conductivity of 2.3 × 10−3 S cm−1 at 650 °C in air, while a slight increase in the conductivity, especially at low temperatures (below 600 °C), was observed in humidified atmospheres.  相似文献   

20.
S. Ramesh  G. P. Ang 《Ionics》2010,16(5):465-473
Plasticized polymer electrolytes composed of poly(methyl methacrylate) (PMMA) as the host polymer and lithium bis(trifluoromethanesulfonyl)imide LiN(CF3SO2)2 as a salt were prepared by solution casting technique at different ratios. The ionic conductivity varied slightly and exhibited a maximum value of 3.65 × 10−5 S cm−1 at 85% PMMA and 15% LiN(CF3SO2)2. The complexation effect of salt was investigated using FTIR. It showed some simple overlapping and shift in peaks between PMMA and LiN(CF3SO2)2 salt in the polymer electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were added to the PMMA–LiN(CF3SO2)2 polymer electrolyte as plasticizer to enhance the conductivity. The highest conductivities obtained were 1.28 × 10−4 S cm−1 and 2.00 × 10−4 S cm−1 for EC and PC mixture system, respectively. In addition, to improve the handling of films, 1% to 5% fumed silica was added to the PMMA–LiN(CF3SO2)2–EC–PC solid polymer electrolyte which showed a maximum value at 6.11 × 10−5 S cm−1 for 2% SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号